Difference between revisions of "DV Creating LUND Files"

From New IAC Wiki
Jump to navigation Jump to search
Line 43: Line 43:
 
This line tells how many particles follow the header line.  For Moller Scattering, this number should always be 2.
 
This line tells how many particles follow the header line.  For Moller Scattering, this number should always be 2.
  
==2:Number of Target Nucleons==
+
===2:Number of Target Nucleons===
 
For this simulation, only an electron-electron collision is considered.  This quantity is always set to 1 for the one stationary electron we consider the incident electron scattering from.
 
For this simulation, only an electron-electron collision is considered.  This quantity is always set to 1 for the one stationary electron we consider the incident electron scattering from.
  

Revision as of 19:15, 29 March 2016

The LUND format

The Header

LUND Header
Column Quantity
1
Number of Particles
2
Number of Target Nucleons
3
Number of Target Protons
4
Target Polarization
5
Beam Polarization
6
x
7
y
8
W
9
[math]Q^2[/math]
10
[math]\nu[/math]

Where

1:Number of Particles

This line tells how many particles follow the header line. For Moller Scattering, this number should always be 2.

2:Number of Target Nucleons

For this simulation, only an electron-electron collision is considered. This quantity is always set to 1 for the one stationary electron we consider the incident electron scattering from.

3:Number of Target Protons

For Moller Scattering, there are no target protons. This number is set to 1, but does not have any effect within the GEMC simulations.

4:Target Polarization

This represents the polarization of the target material, either positive or negative 1. This value is always set to 1 and has no effect within the GEMC simulations.

5:Beam Polarization

This represents the polarization of the electron beam, either negative or positive 1. This value is always set to positive 1.

6:x

This represents the Bjorken x scaling variable.

[math]x=\frac{-q^2}{2p\cdot q}=\frac{-q^2}{2M\nu}=\frac{Q^2}{2M\nu}[/math]


Where M is the rest mass-energy of the proton[math] M\approx 938MeV[/math]

7:y

[math]y=\frac{p\cdot q}{p\cdot k}=\frac{\nu}{E_i}=\frac{E_i-E_f}{E_i}[/math]

8:W

The invariant mass of the final hadronic system


[math]W^2\equiv (p+q)^2=M^2+2M\nu+q^2=M^2+2M\nu-Q^2[/math]

9:[math]Q^2[/math]

This represents the squared 4-momentum-transfer vector q of the exchanged virtual photon.


[math]Q^2\equiv -q^2[/math]


Where q is the momentum transfer betwwn the incident electron and target via the virtual photon.


[math]q\equiv k_i-k_f[/math]

10:[math]\nu[/math]

This represents the energy loss between scattering electrons.

[math]\nu = \frac{p\cdot q}{M}[/math]

This can be written in the Lab frame as:


[math]\nu\equiv E_i-E_f[/math]


where Ei and Ef are the initial and final electron energies.

LUND Header
Column Quantity
1
Index
2
Charge
3
Type (1 is active)
4
Particle ID
5
Parent Index
6
Daughter Index
7
Momentum x (GeV)
8
Momentum y (GeV)
9
Momentum z (GeV)
10
[math]E[/math]
11
Mass
12
Vertex x (cm)
13
Vertex y (cm)
14
Vertex z (cm)

Writing LUND files

Correct for vertex location