Difference between revisions of "Calculations of 4-momentum components"

From New IAC Wiki
Jump to navigation Jump to search
Line 30: Line 30:
  
 
Using the histogram for Theta in the CM frame, we can determine the relative number of events that occur at a given angle.  This information will be used to keep the relative number of particles having the same Theta angle, but multiple Psi angles to evenly cover the detector area
 
Using the histogram for Theta in the CM frame, we can determine the relative number of events that occur at a given angle.  This information will be used to keep the relative number of particles having the same Theta angle, but multiple Psi angles to evenly cover the detector area
 +
 +
[[Filling 2D Energy_Theta Histogram]]
  
 
===Run for Necessary Amount to match Cross Section===
 
===Run for Necessary Amount to match Cross Section===

Revision as of 22:50, 2 April 2016

Setup

Since we want to run for a evenly spaced energy range for Moller electrons, we will need to use some of the scattered electrons to help cover this range. A Moller scattering data file of 4E7 events has no Moller electrons with momentum over 5500 MeV.

awk 'NR == 1 {line = $0; max = $15} NR >1 && $15 > max {line =$0; max =$15} END{print line}' MollerScattering_NH3_4e7incidnet.dat
11000    0     0     11000.5     0     0     -510     5502.94     -14.7812     -50.9086     5503.19     0     0     -505.319     5495.8     14.7812     50.9086     5496.06     0     0     -505.319


Since momentum is conserved, and the data is verified kinematicly, we cannot simply "switch" the data. This data can be altered to have a certain number of different phi values for each energy to match the Moller cross section. This data can then be written to a LUND file, and compared to the previous calculations which did not factor in loss of initial energy.

Prepare Data

Using the existing Moller scattering data from a GEANT simulation of 4E8 incident electrons, a file of just scattered momentum components can be constructed using:

awk '{print $9, $10, $11, $16, $17, $18}' MollerScattering_NH3_4e8incident.dat > Just_Scattered_Momentum.dat

Transfer to CM Frame

Reading in the data from the dat file, we use a C++ program to read the momentum components for the Scattered and Moller electrons into 4-momentum vectors defined as the Lab_final frame of reference.

Performing a Lorentz boost to a Center of Mass frame for the two 4-vectors from the Lab_final frame of reference, we move to a frame where the energies are equal and the momentum are equal but opposite.

Relativistic Kinematics

For Moller Electron energies above 500 MeV, in the Lab frame, histograms of momentum, and theta as well as a 2-D histogram of Energy vs. Theta for the Moller Electron in the CM frame will be filled.

MolEThetaCM 500.png

Using the histogram for Theta in the CM frame, we can determine the relative number of events that occur at a given angle. This information will be used to keep the relative number of particles having the same Theta angle, but multiple Psi angles to evenly cover the detector area

Filling 2D Energy_Theta Histogram

Run for Necessary Amount to match Cross Section

Combo3.png

Using the above plot for the target material, we can find the relative amount that each Theta angle should observe for this process which gives a known Moller differential cross section.


Theta (degrees) Number of events
90 5
100 5
110 6
120 8
130 12
135 20
140 28
142 30
144 40
146 45
148 55
150 70
152 80
154 100

We can set up conditional statements to check what range the Theta angle falls in, then by dividing

[math]\Delta \phi=\frac {2\pi}{number\ of\ events}[/math]

we should find the change in phi needed to give an evenly distributed distribution around the xy plane for a given Theta angle.

UniformPhi.png



Links

Back