Difference between revisions of "Calculation of radiation yield"

From New IAC Wiki
Jump to navigation Jump to search
Line 4: Line 4:
  
 
where <math>\kappa</math> - photon kinetic energy in MeV
 
where <math>\kappa</math> - photon kinetic energy in MeV
 +
 
<math>\Phi_e(Z,E_0,k) = C_B\{2[1-\frac{2E}{3E_0}+(\frac{E}{E})^2][L-\sqrt{\eta}]+\sqrt{\eta}[1-\frac{L^2}{2\rho}-\frac{1}{\rho^2}]\}</math>
 
<math>\Phi_e(Z,E_0,k) = C_B\{2[1-\frac{2E}{3E_0}+(\frac{E}{E})^2][L-\sqrt{\eta}]+\sqrt{\eta}[1-\frac{L^2}{2\rho}-\frac{1}{\rho^2}]\}</math>

Revision as of 19:37, 8 May 2008

The number of photons per MeV per incident electron per [math]g/cm^2[/math] of radiator (Z,A) is given by [1]:

[math]\frac{d^2n}{d\kappa dt} = \frac{3.495 \times 10^{-4}}{A\kappa}[Z^2\Phi_n(Z,E_0,k)+Z\Phi_e(Z,E_0,k)](MeV^{-1}g^{-1}cm^2)[/math],

where [math]\kappa[/math] - photon kinetic energy in MeV

[math]\Phi_e(Z,E_0,k) = C_B\{2[1-\frac{2E}{3E_0}+(\frac{E}{E})^2][L-\sqrt{\eta}]+\sqrt{\eta}[1-\frac{L^2}{2\rho}-\frac{1}{\rho^2}]\}[/math]