Difference between revisions of "Calculating the differential cross-sections for the different materials, and placing them as well as the theoretical differential cross-section into a plot:"

From New IAC Wiki
Jump to navigation Jump to search
Line 119: Line 119:
 
   | 0.07
 
   | 0.07
 
|}
 
|}
 +
 +
 +
  
  

Revision as of 17:20, 15 April 2016

Comparing this to the theoretical differential cross section

As shown above , we find that the differential cross section scale is [math]\frac{d\sigma}{d\Omega}\approx 16.2\times 10^{-2}mb=16.2\mu b[/math]


Converting the number of electrons to barns,

[math]L=\frac{i_{scattered}}{\sigma} \approx i_{scattered}\times \rho_{target}\times l_{target}[/math]


where ρtarget is the density of the target material, ltarget is the length of the target, and iscattered is the number of incident particles scattered.

For LH2:

[math]\rho_{target}\times l_{target}=\frac{70.85 kg}{1 m^3}\times \frac{1 mole}{2.02 g} \times \frac{1000g}{1 kg} \times \frac{6\times10^{23} atoms}{1 mole} \times \frac{1m^3}{(100 cm)^3} \times \frac{1 cm}{ } \times \frac{10^{-24} cm^{2}}{barn} =2.10\times 10^{-2} barns[/math]


[math]\frac{1}{\rho_{target}\times l_{target} \times 4\times 10^7}=1.19\times 10^{-6} barns[/math]


For Carbon:

[math]\rho_{target}\times l_{target}=\frac{2.26 g}{1 cm^3}\times \frac{1 mole}{12.0107 g} \times \times \frac{6\times10^{23} atoms}{1 mole} \times \frac{1 cm}{ } \times \frac{10^{-24} cm^{2}}{barn} =1.13\times 10^{-1} barns[/math]


[math]\frac{1}{\rho_{target}\times l_{target} \times 4\times 10^7}=2.21\times 10^{-7} barns[/math]

For Ammonia:


[math]\rho_{target}\times l_{target}=\frac{.8 g}{1 cm^3}\times \frac{1 mole}{17 g} \times \frac{6\times10^{23} atoms}{1 mole} \times \frac{1 cm}{ } \times \frac{10^{-24} cm^2}{barn} =2.82\times 10^{-2} barns[/math]


[math]\frac{1}{\rho_{target}\times l_{target} \times 4\times 10^7}=8.87\times 10^{-7} barns[/math]

Combing plots in Root:

new TBrowser();
TH1F *LH2=new TH1F("LH2","LH2",360,90,180);
LH2->Add(MollerThetaCM,1.19e-6);
LH2->Draw();

TH1F *C12=new TH1F("C12","C12",360,90,180);
C12->Add(MollerThetaCM,2.21e-7);
C12->Draw();

TH1F *NH3=new TH1F("NH3","NH3",360,90,180);
NH3->Add(MollerThetaCM,8.87e-7);
NH3->Draw();
LH2->Draw("same");
C12->Draw("same");
Theory->Draw("same");


Figure 8c: The Moller electron differential cross-section for 4E7 incident 11 GeV electrons in the Center of Mass frame of reference.
Molar Mass of Target Material
Material Molar Mass (g/mole)
NH3 17
C 12
LH2 2


Number of Electrons in Target Material
Material Number of Electrons
NH3 10
C 6
LH2 2






[math]\Longrightarrow[/math]The molar mass is proportional to the number of electrons in the target material. The theoretical Moller differential cross-section is an expression for a single scattering electron. NH3, as a molecule, is composed of 10 electrons that all have an equal momentum and probability of scattering with the incident electron in the CM frame.


Comparing this with a plot of the Moller scattering angle theta,

Figure 8d: The Moller scattering angle theta for 4E7 incident 11 GeV electrons in the Center of Mass frame of reference for 3 different target materials.
'Density of target material
Material Density (g/cm3)
C 2.26
NH3 0.86
LH2 0.07








[math]\Longrightarrow[/math]In the lab frame, the incident electron, and the transfer of its momentum, depends on the stationary target material density. The more dense material requires more energy to break the bonds

Moller Electron Momentum in Lab Frame
Figure 8b: The Moller electron momentum distribution for 4E7 incident 11 GeV electrons in the Lab frame of reference.

Links

Back