5mA, 100ns pulse width, 100cm from beam pipe with Titanium window

From New IAC Wiki
Revision as of 19:19, 29 May 2018 by Harpconn (talk | contribs) (Created page with "Changed distance from end of beam pipe from 25cm to 50cm. Cut current by a factor of 5. 25mA->5mA Assuming <math>5\frac{mA}{pulse}</math> and a pulse width of <math>100ns</...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Changed distance from end of beam pipe from 25cm to 50cm.

Cut current by a factor of 5. 25mA->5mA

Assuming [math]5\frac{mA}{pulse}[/math] and a pulse width of [math]100ns[/math]

Then [math]55\frac{mA}{pulse}=5\frac{mC}{s*pulse}=0.005\frac{C}{s*pulse}[/math]

[math]0.005\frac{C}{s*pulse}(100ns)=0.5*10^{-9}\frac{C}{pulse}[/math]

[math]0.5*10^{-9}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=3.1211*10^{9}\frac{e-}{pulse}[/math]

OSL

[math]\frac{1}{1000}[/math] of a pulse. ~3.1mil e- simulated, ~3.1bil e- per pulse. With beam parameters given above.

Deposited Energy: [math]--*10^{-} MeV[/math]

OSL geometry: 0.501cm diameter cylinder of 0.03cm thickness with beam incident on flat face.

OSL Crystal density[math]=3.9698\frac{g}{cm^{3}}[/math]

Mass of a single OSL crystal: [math](\pi(0.2505)^{2}*(0.03))*(3.9698)=0.0234777g[/math]

Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes [math]---*10^{} MeV[/math]

Converting to Joules for dose calculation: [math]---*10^{} MeV=---*10^{}J[/math]

Average dose per pulse: [math]\frac{---*10^{}J}{0.0234777*10^{-3}\ Kg}=---\ Gy=---\ rad[/math]

Quartz

[math]\frac{1}{1000}[/math] of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.

Deposited Energy: [math]---*10^{} MeV[/math]

Quartz Geometry: 1 inch diameter, 0.5 inch tall cylinder with electrons incident upon the base of the cylinder.

Quartz density[math]=2.32\frac{g}{cm^{3}}[/math]

Mass of Quartz used in simulation: [math](\pi(1.27)^{2}*(1.27))*(2.32)=14.9296g[/math]

Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes [math]---*10^{} MeV[/math]

Converting to Joules for dose calculation: [math]---*10^{} MeV=---J[/math]

Average dose per pulse [math]\frac{----\ J}{14.9296*10^{-3}\ Kg}=---\ Gy=---\ rad[/math]

Plastic (Polyethylene)


Linac Run Plan April 2018, Dr. McNulty