Difference between revisions of "5mA, 100ns pulse width, 100cm from beam pipe with Titanium window"

From New IAC Wiki
Jump to navigation Jump to search
Line 33: Line 33:
 
<math>\frac{1}{1000}</math> of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.
 
<math>\frac{1}{1000}</math> of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.
  
Deposited Energy: <math>---*10^{} MeV</math>
+
Deposited Energy: <math>1.15578*10^{6} MeV</math>
  
 
Quartz Geometry: 1 inch diameter, 0.5 inch tall cylinder with electrons incident upon the base of the cylinder.  
 
Quartz Geometry: 1 inch diameter, 0.5 inch tall cylinder with electrons incident upon the base of the cylinder.  
Line 41: Line 41:
 
Mass of Quartz used in simulation: <math>(\pi(1.27)^{2}*(1.27))*(2.32)=14.9296g</math>
 
Mass of Quartz used in simulation: <math>(\pi(1.27)^{2}*(1.27))*(2.32)=14.9296g</math>
  
Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>---*10^{} MeV</math>  
+
Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>1.15578*10^{9} MeV</math>  
  
Converting to Joules for dose calculation: <math>---*10^{} MeV=---J</math>
+
Converting to Joules for dose calculation: <math>1.15578*10^{9} MeV=0.0001851763630296J</math>
  
Average dose per pulse <math>\frac{----\ J}{14.9296*10^{-3}\ Kg}=---\ Gy=---\ rad</math>
+
Average dose per pulse <math>\frac{0.0001851763630296\ J}{14.9296*10^{-3}\ Kg}=0.0124033\ Gy=1.24033\ rad</math>
  
 
===Plastic===
 
===Plastic===

Revision as of 04:00, 30 May 2018

Changed distance from end of beam pipe from 25cm to 50cm.

Cut current by a factor of 5. 25mA->5mA

Assuming [math]5\frac{mA}{pulse}[/math] and a pulse width of [math]100ns[/math]

Then [math]55\frac{mA}{pulse}=5\frac{mC}{s*pulse}=0.005\frac{C}{s*pulse}[/math]

[math]0.005\frac{C}{s*pulse}(100ns)=0.5*10^{-9}\frac{C}{pulse}[/math]

[math]0.5*10^{-9}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=3.1211*10^{9}\frac{e-}{pulse}[/math]

OSL

[math]\frac{1}{1000}[/math] of a pulse. ~3.1mil e- simulated, ~3.1bil e- per pulse. With beam parameters given above.

Deposited Energy: [math]1644.88 MeV[/math]

OSL geometry: 0.501cm diameter cylinder of 0.03cm thickness with beam incident on flat face.

OSL Crystal density[math]=3.9698\frac{g}{cm^{3}}[/math]

Mass of a single OSL crystal: [math](\pi(0.2505)^{2}*(0.03))*(3.9698)=0.0234777g[/math]

Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes [math]1644.88*10^{3} MeV[/math]

Converting to Joules for dose calculation: [math]1644.88*10^{3} MeV=2.63538819*10^{-7}J[/math]

Average dose per pulse: [math]\frac{2.63538819*10^{-7}J}{0.0234777*10^{-3}\ Kg}=0.0112251\ Gy=1.12251\ rad[/math]

Quartz

[math]\frac{1}{1000}[/math] of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.

Deposited Energy: [math]1.15578*10^{6} MeV[/math]

Quartz Geometry: 1 inch diameter, 0.5 inch tall cylinder with electrons incident upon the base of the cylinder.

Quartz density[math]=2.32\frac{g}{cm^{3}}[/math]

Mass of Quartz used in simulation: [math](\pi(1.27)^{2}*(1.27))*(2.32)=14.9296g[/math]

Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes [math]1.15578*10^{9} MeV[/math]

Converting to Joules for dose calculation: [math]1.15578*10^{9} MeV=0.0001851763630296J[/math]

Average dose per pulse [math]\frac{0.0001851763630296\ J}{14.9296*10^{-3}\ Kg}=0.0124033\ Gy=1.24033\ rad[/math]

Plastic

[math]\frac{1}{1000}[/math] of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.

Deposited Energy: [math]2.48888*10^{6} MeV[/math]

Plastic Geometry: 1 inch diameter, 0.5 inch tall cylinder with electrons incident upon the base of the cylinder.

Plastic density[math]=0.94\frac{g}{cm^{3}}[/math]

Mass of Plastic used in simulation: [math](\pi(1.27)^{2}*(1.27))*(0.94)=6.43518g[/math]

Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes [math]2.48888*10^{9}MeV[/math]

Converting to Joules for dose calculation: [math]2.48888*10^{9} MeV=0.0003987625209097J[/math]

Average dose per pulse [math]\frac{0.0003987625209097\ J}{6.43518*10^{-3}\ Kg}=0.061966\ Gy=6.1966\ rad[/math]


Linac Run Plan April 2018, Dr. McNulty