Difference between revisions of "25mA, 100ns pulse width, 100cm from beam pipe, with Titanium window"

From New IAC Wiki
Jump to navigation Jump to search
(Created page with "Assuming <math>25\frac{mA}{pulse}</math> and a pulse width of <math>100ns</math> Then <math>25\frac{mA}{pulse}=25\frac{mC}{s*pulse}=0.025\frac{C}{s*pulse}</math> <math>0.025...")
 
 
(6 intermediate revisions by the same user not shown)
Line 11: Line 11:
 
<math>\frac{1}{1000}</math> of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.
 
<math>\frac{1}{1000}</math> of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.
  
Deposited Energy: <math>32248.5 MeV</math>
+
Deposited Energy: <math>8088.49 MeV</math>
  
 
OSL geometry: 0.501cm diameter cylinder of 0.03cm thickness with beam incident on flat face.  
 
OSL geometry: 0.501cm diameter cylinder of 0.03cm thickness with beam incident on flat face.  
Line 19: Line 19:
 
Mass of a single OSL crystal: <math>(\pi(0.2505)^{2}*(0.03))*(3.9698)=0.0234777g</math>
 
Mass of a single OSL crystal: <math>(\pi(0.2505)^{2}*(0.03))*(3.9698)=0.0234777g</math>
  
Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>32248.5*10^{3} MeV</math>
+
Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>8088.49*10^{3} MeV</math>
  
Converting to Joules for dose calculation: <math>32248.5*10^{3} MeV=5.16677906*10^{-6}J</math>
+
Converting to Joules for dose calculation: <math>8088.49*10^{3} MeV=1.29591891*10^{-6}J</math>
  
Average dose per pulse: <math>\frac{5.16677906*10^{-6}J}{0.0234777*10^{-3}\ Kg}=\ Gy=\ rad</math>
+
Average dose per pulse: <math>\frac{1.29591891*10^{-6}J}{0.0234777*10^{-3}\ Kg}=0.0551979\ Gy=5.51979\ rad</math>
  
 
===Quartz===
 
===Quartz===
Line 29: Line 29:
 
<math>\frac{1}{1000}</math> of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.
 
<math>\frac{1}{1000}</math> of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.
  
Deposited Energy: <math>9.21601*10^{7} MeV</math>
+
Deposited Energy: <math>5.76057*10^{6} MeV</math>
  
 
Quartz Geometry: 1 inch diameter, 0.5 inch tall cylinder with electrons incident upon the base of the cylinder.  
 
Quartz Geometry: 1 inch diameter, 0.5 inch tall cylinder with electrons incident upon the base of the cylinder.  
Line 37: Line 37:
 
Mass of Quartz used in simulation: <math>(\pi(1.27)^{2}*(1.27))*(2.32)=14.9296g</math>
 
Mass of Quartz used in simulation: <math>(\pi(1.27)^{2}*(1.27))*(2.32)=14.9296g</math>
  
Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>9.21601*10^{10} MeV</math>  
+
Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>5.76057*10^{9}MeV</math>  
  
Converting to Joules for dose calculation: <math>9.21601*10^{10} MeV=0.0147657J</math>
+
Converting to Joules for dose calculation: <math>5.76057*10^{9} MeV=0.0009229450255042J</math>
  
Average dose per pulse <math>\frac{0.0147657\ J}{14.9296*10^{-3}\ Kg}=0.98902\ Gy=98.902\ rad</math>
+
Average dose per pulse <math>\frac{0.0009229450255042\ J}{14.9296*10^{-3}\ Kg}=0.0618197\ Gy=6.18197\ rad</math>
  
 +
===Plastic===
 +
 +
<math>\frac{1}{1000}</math> of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.
 +
 +
Deposited Energy: <math>2.48888*10^{6} MeV</math>
 +
 +
Plastic Geometry: 1 inch diameter, 0.5 inch tall cylinder with electrons incident upon the base of the cylinder.
 +
 +
Plastic density<math>=0.94\frac{g}{cm^{3}}</math>
 +
 +
Mass of Plastic used in simulation: <math>(\pi(1.27)^{2}*(1.27))*(0.94)=6.43518g</math>
 +
 +
Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>2.48888*10^{9}MeV</math>
 +
 +
Converting to Joules for dose calculation: <math>2.48888*10^{9} MeV=0.0003987625209097J</math>
 +
 +
Average dose per pulse <math>\frac{0.0003987625209097\ J}{6.43518*10^{-3}\ Kg}=0.061966\ Gy=6.1966\ rad</math>
 
----
 
----
 
[[Linac Run Plan April 2018, Dr. McNulty]]
 
[[Linac Run Plan April 2018, Dr. McNulty]]

Latest revision as of 03:42, 30 May 2018

Assuming [math]25\frac{mA}{pulse}[/math] and a pulse width of [math]100ns[/math]

Then [math]25\frac{mA}{pulse}=25\frac{mC}{s*pulse}=0.025\frac{C}{s*pulse}[/math]

[math]0.025\frac{C}{s*pulse}(100ns)=2.5*10^{-9}\frac{C}{pulse}[/math]

[math]2.5*10^{-9}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=1.56055*10^{10}\frac{e-}{pulse}[/math]

OSL

[math]\frac{1}{1000}[/math] of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.

Deposited Energy: [math]8088.49 MeV[/math]

OSL geometry: 0.501cm diameter cylinder of 0.03cm thickness with beam incident on flat face.

OSL Crystal density[math]=3.9698\frac{g}{cm^{3}}[/math]

Mass of a single OSL crystal: [math](\pi(0.2505)^{2}*(0.03))*(3.9698)=0.0234777g[/math]

Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes [math]8088.49*10^{3} MeV[/math]

Converting to Joules for dose calculation: [math]8088.49*10^{3} MeV=1.29591891*10^{-6}J[/math]

Average dose per pulse: [math]\frac{1.29591891*10^{-6}J}{0.0234777*10^{-3}\ Kg}=0.0551979\ Gy=5.51979\ rad[/math]

Quartz

[math]\frac{1}{1000}[/math] of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.

Deposited Energy: [math]5.76057*10^{6} MeV[/math]

Quartz Geometry: 1 inch diameter, 0.5 inch tall cylinder with electrons incident upon the base of the cylinder.

Quartz density[math]=2.32\frac{g}{cm^{3}}[/math]

Mass of Quartz used in simulation: [math](\pi(1.27)^{2}*(1.27))*(2.32)=14.9296g[/math]

Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes [math]5.76057*10^{9}MeV[/math]

Converting to Joules for dose calculation: [math]5.76057*10^{9} MeV=0.0009229450255042J[/math]

Average dose per pulse [math]\frac{0.0009229450255042\ J}{14.9296*10^{-3}\ Kg}=0.0618197\ Gy=6.18197\ rad[/math]

Plastic

[math]\frac{1}{1000}[/math] of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.

Deposited Energy: [math]2.48888*10^{6} MeV[/math]

Plastic Geometry: 1 inch diameter, 0.5 inch tall cylinder with electrons incident upon the base of the cylinder.

Plastic density[math]=0.94\frac{g}{cm^{3}}[/math]

Mass of Plastic used in simulation: [math](\pi(1.27)^{2}*(1.27))*(0.94)=6.43518g[/math]

Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes [math]2.48888*10^{9}MeV[/math]

Converting to Joules for dose calculation: [math]2.48888*10^{9} MeV=0.0003987625209097J[/math]

Average dose per pulse [math]\frac{0.0003987625209097\ J}{6.43518*10^{-3}\ Kg}=0.061966\ Gy=6.1966\ rad[/math]


Linac Run Plan April 2018, Dr. McNulty