2008 NSF Proposal

From New IAC Wiki
Revision as of 09:29, 15 July 2008 by Oborn (talk | contribs) (→‎CLAS)
Jump to navigation Jump to search

Physics Program

Qweak

Physics Measurement

ISU's Role

Work Package manager of the Detector and Front End electronics.

Future activities

Primakoff

CLAS

Physics Program

Polarized Structure Functions

[math]\frac{\Delta d}{d}[/math]

CLAS 12 DC Design and Construction

Prior and Future use of NSF Funds

\hspace{0.5in}While at Louisiana Tech University, the PI received three prior NSF awards as a member of the Louisiana Tech Particle Physics Group. The first proposal entitled ``Parity Violating Electron Scattering at Jefferson Lab, was awarded in 2002 for three years in the amount of \$670,230 (NSF Award \#0244998) to Louisiana Tech University. The award supported the groups efforts building triggering electronics for the G0 backward angle measurements and for the initial development of the $Q_{weak}$ experiment. The second proposal, ``Precision Electroweak Measurements at Jefferson Lab, was awarded \$204,594 in 2006 (NSF Award \#0555390) with similar support for the next two years to continuing the Lousiana Group's efforts. Dr. Forest's MRI Proposal (\#PHYS-0321197) entitled {\small ``Collaborative Research:Development of a Particle Tracking System for the Qweak Experiment} was awarded \$131,770 on July 26, 2003 to develop the Region 1 tracking system for the Q$_{weak}$ experiment. The status of the work supported by the above awards which the PI was responsible for is given in section~\ref{section:QweakDetector} and shown in Figure~\ref{fig:QweakProducts}.

Facilities

\hspace{0.5in}The Idaho State University Department of Physics Strategic Plan identifies the use of experimental nuclear physics techniques as its focus area to addressing problems in both fundamental and applied science. The major efforts of the department include fundamental nuclear and particle physics, nuclear reactor fuel cycle physics, nuclear non-proliferation and homeland security, accelerator applications, radiation effects in materials and devices, biology and health physics. Because of this focus, the department has been characterized as one of the largest nuclear physics graduate programs in the nation with an average of over 50 graduate students. One of the key ingredients to the department's success has been the completion of the Idaho Accelerator Center (IAC) on April 30, 1999. A substantial amount of lab space (4000 sq. ft.) within the department has become available due to a combination of the IAC and a remodeling of the physics building. A detector lab with the potential to construct proto-type drift chambers in a clean room environment is currently planned as part of the lab space renovation.

The Idaho Accelerator Center (IAC) is located less than a mile away from campus and will provide a machining facility for detector construction, an electronics shop for installation of instrumentation, and beam time for detector performance studies. The IAC houses ten operating accelerators as well as a machine and electronics shop with a permanent staff of 8 Ph.D.'s and 6 engineers. Among its many accelerator systems, the Center houses a Linac capable of delivering 20 ns to 2 $\mu$s electron pulses with an instantaneous current of 80 mA up to an energy of 25 MeV at pulse rates up to 1kHz. The IAC has donated beam time to the Q$_{weak}$ project for the purpose of testing detector performance. One of the goals of these tests will be to evaluate the Q$_{weak}$ detector at high rates. The IAC is well suited for these rate tests as the Q$_{weak}$ calibration rates will be much lower than the electron and photon rates the IAC is capable of generating. A full description of the facility is available at the web site (www.iac.isu.edu).

The Beowulf REsource for Monte-carlo Simulations (BREMS) is a 12 node, 64 bit cluster housed in the ISU physics department which can support the high performance computing needs of the physics research program. This facility is the result of an investment made by NSF award PHYS-987453. This infrastructure will be an effective means for performing GEANT4 simulations of the Q$_{weak}$ experiment as well as Garfield simulations of the Region II drift chamber design. Simulation speed is increased on BREMS by running the simulation in parallel on many CPUs. A version of GEANT4 known as ParGeant4~\cite{ParGeant4} has recently been distributed which will allow these simulations to be run in parallel.

The Broader Impact of the Idaho State University Nuclear Physics Research Program

Go Back