Difference between revisions of "100mA, 100ns pulse width, 100cm from beam pipe, with Titanium window"

From New IAC Wiki
Jump to navigation Jump to search
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
Assuming <math>25\frac{mA}{pulse}</math> and a pulse width of <math>100ns</math>
+
Assuming <math>100\frac{mA}{pulse}</math> and a pulse width of <math>100ns</math>
  
Then <math>25\frac{mA}{pulse}=25\frac{mC}{s*pulse}=0.025\frac{C}{s*pulse}</math>
+
Then <math>100\frac{mA}{pulse}=100\frac{mC}{s*pulse}=0.1\frac{C}{s*pulse}</math>
  
<math>0.025\frac{C}{s*pulse}(100ns)=2.5*10^{-9}\frac{C}{pulse}</math>
+
<math>0.1\frac{C}{s*pulse}(100ns)=10*10^{-9}\frac{C}{pulse}</math>
 
 
<math>2.5*10^{-9}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=1.56055*10^{10}\frac{e-}{pulse}</math>
 
  
 +
<math>10*10^{-9}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=6.2422*10^{10}\frac{e-}{pulse}</math>
 +
 
===OSL===
 
===OSL===
  
<math>\frac{1}{1000}</math> of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.
+
<math>\frac{1}{100000}</math> of a pulse. 624219 e- simulated, ~62bil e- per pulse. With beam parameters given above.
  
Deposited Energy: <math>33298.7 MeV</math>
+
Deposited Energy: <math>332.987 MeV</math>
  
 
OSL geometry: 0.501cm diameter cylinder of 0.03cm thickness with beam incident on flat face.  
 
OSL geometry: 0.501cm diameter cylinder of 0.03cm thickness with beam incident on flat face.  
Line 19: Line 19:
 
Mass of a single OSL crystal: <math>(\pi(0.2505)^{2}*(0.03))*(3.9698)=0.0234777g</math>
 
Mass of a single OSL crystal: <math>(\pi(0.2505)^{2}*(0.03))*(3.9698)=0.0234777g</math>
  
Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>33298.7*10^{3} MeV</math>
+
Scaling deposited energy by 100000 to account for only shooting a 100000th of a pulse, the deposited energy becomes <math>33298.7*10^{3} MeV</math>
  
 
Converting to Joules for dose calculation: <math>33298.7*10^{3} MeV=5.335039678*10^{-6}J</math>
 
Converting to Joules for dose calculation: <math>33298.7*10^{3} MeV=5.335039678*10^{-6}J</math>
Line 27: Line 27:
 
===Quartz===
 
===Quartz===
  
<math>\frac{1}{1000}</math> of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.
+
<math>\frac{1}{100000}</math> of a pulse. 624219 e- simulated, ~62bil e- per pulse. With beam parameters given above.
  
Deposited Energy: <math>2.30626*10^{6} MeV</math>
+
Deposited Energy: <math>231633 MeV</math>
  
 
Quartz Geometry: 1 inch diameter, 0.5 inch tall cylinder with electrons incident upon the base of the cylinder.  
 
Quartz Geometry: 1 inch diameter, 0.5 inch tall cylinder with electrons incident upon the base of the cylinder.  
Line 37: Line 37:
 
Mass of Quartz used in simulation: <math>(\pi(1.27)^{2}*(1.27))*(2.32)=14.9296g</math>
 
Mass of Quartz used in simulation: <math>(\pi(1.27)^{2}*(1.27))*(2.32)=14.9296g</math>
  
Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>2.30626*10^{9}MeV</math>  
+
Scaling deposited energy by 100000 to account for only shooting a 100000th of a pulse, the deposited energy becomes <math>23163300*10^{3}MeV</math>  
  
Converting to Joules for dose calculation: <math>2.30626*10^{9} MeV=0.0003695035724797J</math>
+
Converting to Joules for dose calculation: <math>23163300*10^{3} MeV=0.0037111696428064J</math>
  
Average dose per pulse <math>\frac{0.0003695035724797\ J}{14.9296*10^{-3}\ Kg}=0.0247497\ Gy=2.47497\ rad</math>
+
Average dose per pulse <math>\frac{0.0037111696428064\ J}{14.9296*10^{-3}\ Kg}=0.248577\ Gy=24.8577\ rad</math>
  
 
===Plastic===
 
===Plastic===
  
<math>\frac{1}{1000}</math> of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.
+
<math>\frac{1}{100000}</math> of a pulse. 624219 e- simulated, ~62bil e- per pulse. With beam parameters given above.
  
Deposited Energy: <math>994043 MeV</math>
+
Deposited Energy: <math>98595.1 MeV</math>
  
 
Plastic Geometry: 1 inch diameter, 0.5 inch tall cylinder with electrons incident upon the base of the cylinder.  
 
Plastic Geometry: 1 inch diameter, 0.5 inch tall cylinder with electrons incident upon the base of the cylinder.  
Line 55: Line 55:
 
Mass of Plastic used in simulation: <math>(\pi(1.27)^{2}*(1.27))*(0.94)=6.43518g</math>
 
Mass of Plastic used in simulation: <math>(\pi(1.27)^{2}*(1.27))*(0.94)=6.43518g</math>
  
Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>994043*10^{3}MeV</math>  
+
Scaling deposited energy by 100000 to account for only shooting a 100000th of a pulse, the deposited energy becomes <math>9859510*10^{3}MeV</math>  
  
Converting to Joules for dose calculation: <math>994043*10^{3}MeV=0.00015926323992J</math>
+
Converting to Joules for dose calculation: <math>9859510*10^{3}MeV=0.001579667586438J</math>
  
Average dose per pulse <math>\frac{0.00015926323992\ J}{6.43518*10^{-3}\ Kg}=0.0247488\ Gy=2.47488\ rad</math>
+
Average dose per pulse <math>\frac{0.001579667586438\ J}{6.43518*10^{-3}\ Kg}=0.245474\ Gy=24.5474\ rad</math>
 
----
 
----
 
[[Linac Run Plan April 2018, Dr. McNulty]]
 
[[Linac Run Plan April 2018, Dr. McNulty]]

Latest revision as of 19:01, 30 May 2018

Assuming [math]100\frac{mA}{pulse}[/math] and a pulse width of [math]100ns[/math]

Then [math]100\frac{mA}{pulse}=100\frac{mC}{s*pulse}=0.1\frac{C}{s*pulse}[/math]

[math]0.1\frac{C}{s*pulse}(100ns)=10*10^{-9}\frac{C}{pulse}[/math]

[math]10*10^{-9}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=6.2422*10^{10}\frac{e-}{pulse}[/math]

OSL

[math]\frac{1}{100000}[/math] of a pulse. 624219 e- simulated, ~62bil e- per pulse. With beam parameters given above.

Deposited Energy: [math]332.987 MeV[/math]

OSL geometry: 0.501cm diameter cylinder of 0.03cm thickness with beam incident on flat face.

OSL Crystal density[math]=3.9698\frac{g}{cm^{3}}[/math]

Mass of a single OSL crystal: [math](\pi(0.2505)^{2}*(0.03))*(3.9698)=0.0234777g[/math]

Scaling deposited energy by 100000 to account for only shooting a 100000th of a pulse, the deposited energy becomes [math]33298.7*10^{3} MeV[/math]

Converting to Joules for dose calculation: [math]33298.7*10^{3} MeV=5.335039678*10^{-6}J[/math]

Average dose per pulse: [math]\frac{5.335039678*10^{-6}J}{0.0234777*10^{-3}\ Kg}=0.227239\ Gy=22.7239\ rad[/math]

Quartz

[math]\frac{1}{100000}[/math] of a pulse. 624219 e- simulated, ~62bil e- per pulse. With beam parameters given above.

Deposited Energy: [math]231633 MeV[/math]

Quartz Geometry: 1 inch diameter, 0.5 inch tall cylinder with electrons incident upon the base of the cylinder.

Quartz density[math]=2.32\frac{g}{cm^{3}}[/math]

Mass of Quartz used in simulation: [math](\pi(1.27)^{2}*(1.27))*(2.32)=14.9296g[/math]

Scaling deposited energy by 100000 to account for only shooting a 100000th of a pulse, the deposited energy becomes [math]23163300*10^{3}MeV[/math]

Converting to Joules for dose calculation: [math]23163300*10^{3} MeV=0.0037111696428064J[/math]

Average dose per pulse [math]\frac{0.0037111696428064\ J}{14.9296*10^{-3}\ Kg}=0.248577\ Gy=24.8577\ rad[/math]

Plastic

[math]\frac{1}{100000}[/math] of a pulse. 624219 e- simulated, ~62bil e- per pulse. With beam parameters given above.

Deposited Energy: [math]98595.1 MeV[/math]

Plastic Geometry: 1 inch diameter, 0.5 inch tall cylinder with electrons incident upon the base of the cylinder.

Plastic density[math]=0.94\frac{g}{cm^{3}}[/math]

Mass of Plastic used in simulation: [math](\pi(1.27)^{2}*(1.27))*(0.94)=6.43518g[/math]

Scaling deposited energy by 100000 to account for only shooting a 100000th of a pulse, the deposited energy becomes [math]9859510*10^{3}MeV[/math]

Converting to Joules for dose calculation: [math]9859510*10^{3}MeV=0.001579667586438J[/math]

Average dose per pulse [math]\frac{0.001579667586438\ J}{6.43518*10^{-3}\ Kg}=0.245474\ Gy=24.5474\ rad[/math]


Linac Run Plan April 2018, Dr. McNulty