Difference between revisions of "100mA, 100ns pulse width, 100cm from beam pipe, with Titanium window"

From New IAC Wiki
Jump to navigation Jump to search
(Created page with "Assuming <math>25\frac{mA}{pulse}</math> and a pulse width of <math>100ns</math> Then <math>25\frac{mA}{pulse}=25\frac{mC}{s*pulse}=0.025\frac{C}{s*pulse}</math> <math>0.025...")
 
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
Assuming <math>25\frac{mA}{pulse}</math> and a pulse width of <math>100ns</math>
+
Assuming <math>100\frac{mA}{pulse}</math> and a pulse width of <math>100ns</math>
  
Then <math>25\frac{mA}{pulse}=25\frac{mC}{s*pulse}=0.025\frac{C}{s*pulse}</math>
+
Then <math>100\frac{mA}{pulse}=100\frac{mC}{s*pulse}=0.1\frac{C}{s*pulse}</math>
  
<math>0.025\frac{C}{s*pulse}(100ns)=2.5*10^{-9}\frac{C}{pulse}</math>
+
<math>0.1\frac{C}{s*pulse}(100ns)=10*10^{-9}\frac{C}{pulse}</math>
 
 
<math>2.5*10^{-9}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=1.56055*10^{10}\frac{e-}{pulse}</math>
 
  
 +
<math>10*10^{-9}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=6.2422*10^{10}\frac{e-}{pulse}</math>
 +
 
===OSL===
 
===OSL===
  
<math>\frac{1}{1000}</math> of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.
+
<math>\frac{1}{100000}</math> of a pulse. 624219 e- simulated, ~62bil e- per pulse. With beam parameters given above.
  
Deposited Energy: <math>3273.41 MeV</math>
+
Deposited Energy: <math>332.987 MeV</math>
  
 
OSL geometry: 0.501cm diameter cylinder of 0.03cm thickness with beam incident on flat face.  
 
OSL geometry: 0.501cm diameter cylinder of 0.03cm thickness with beam incident on flat face.  
Line 19: Line 19:
 
Mass of a single OSL crystal: <math>(\pi(0.2505)^{2}*(0.03))*(3.9698)=0.0234777g</math>
 
Mass of a single OSL crystal: <math>(\pi(0.2505)^{2}*(0.03))*(3.9698)=0.0234777g</math>
  
Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>3273.41*10^{3} MeV</math>
+
Scaling deposited energy by 100000 to account for only shooting a 100000th of a pulse, the deposited energy becomes <math>33298.7*10^{3} MeV</math>
  
Converting to Joules for dose calculation: <math>3273.41*10^{3} MeV=5.24458079*10^{-7}J</math>
+
Converting to Joules for dose calculation: <math>33298.7*10^{3} MeV=5.335039678*10^{-6}J</math>
  
Average dose per pulse: <math>\frac{5.24458079*10^{-7}J}{0.0234777*10^{-3}\ Kg}=0.0223386\ Gy=2.23386\ rad</math>
+
Average dose per pulse: <math>\frac{5.335039678*10^{-6}J}{0.0234777*10^{-3}\ Kg}=0.227239\ Gy=22.7239\ rad</math>
  
 
===Quartz===
 
===Quartz===
  
<math>\frac{1}{1000}</math> of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.
+
<math>\frac{1}{100000}</math> of a pulse. 624219 e- simulated, ~62bil e- per pulse. With beam parameters given above.
  
Deposited Energy: <math>2.30626*10^{6} MeV</math>
+
Deposited Energy: <math>231633 MeV</math>
  
 
Quartz Geometry: 1 inch diameter, 0.5 inch tall cylinder with electrons incident upon the base of the cylinder.  
 
Quartz Geometry: 1 inch diameter, 0.5 inch tall cylinder with electrons incident upon the base of the cylinder.  
Line 37: Line 37:
 
Mass of Quartz used in simulation: <math>(\pi(1.27)^{2}*(1.27))*(2.32)=14.9296g</math>
 
Mass of Quartz used in simulation: <math>(\pi(1.27)^{2}*(1.27))*(2.32)=14.9296g</math>
  
Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>2.30626*10^{9}MeV</math>  
+
Scaling deposited energy by 100000 to account for only shooting a 100000th of a pulse, the deposited energy becomes <math>23163300*10^{3}MeV</math>  
  
Converting to Joules for dose calculation: <math>2.30626*10^{9} MeV=0.0003695035724797J</math>
+
Converting to Joules for dose calculation: <math>23163300*10^{3} MeV=0.0037111696428064J</math>
  
Average dose per pulse <math>\frac{0.0003695035724797\ J}{14.9296*10^{-3}\ Kg}=0.0247497\ Gy=2.47497\ rad</math>
+
Average dose per pulse <math>\frac{0.0037111696428064\ J}{14.9296*10^{-3}\ Kg}=0.248577\ Gy=24.8577\ rad</math>
  
 
===Plastic===
 
===Plastic===
  
<math>\frac{1}{1000}</math> of a pulse. ~15mil e- simulated, ~15bil e- per pulse. With beam parameters given above.
+
<math>\frac{1}{100000}</math> of a pulse. 624219 e- simulated, ~62bil e- per pulse. With beam parameters given above.
  
Deposited Energy: <math>994043 MeV</math>
+
Deposited Energy: <math>98595.1 MeV</math>
  
 
Plastic Geometry: 1 inch diameter, 0.5 inch tall cylinder with electrons incident upon the base of the cylinder.  
 
Plastic Geometry: 1 inch diameter, 0.5 inch tall cylinder with electrons incident upon the base of the cylinder.  
Line 55: Line 55:
 
Mass of Plastic used in simulation: <math>(\pi(1.27)^{2}*(1.27))*(0.94)=6.43518g</math>
 
Mass of Plastic used in simulation: <math>(\pi(1.27)^{2}*(1.27))*(0.94)=6.43518g</math>
  
Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>994043*10^{3}MeV</math>  
+
Scaling deposited energy by 100000 to account for only shooting a 100000th of a pulse, the deposited energy becomes <math>9859510*10^{3}MeV</math>  
  
Converting to Joules for dose calculation: <math>994043*10^{3}MeV=0.00015926323992J</math>
+
Converting to Joules for dose calculation: <math>9859510*10^{3}MeV=0.001579667586438J</math>
  
Average dose per pulse <math>\frac{0.00015926323992\ J}{6.43518*10^{-3}\ Kg}=0.0247488\ Gy=2.47488\ rad</math>
+
Average dose per pulse <math>\frac{0.001579667586438\ J}{6.43518*10^{-3}\ Kg}=0.245474\ Gy=24.5474\ rad</math>
 
----
 
----
 
[[Linac Run Plan April 2018, Dr. McNulty]]
 
[[Linac Run Plan April 2018, Dr. McNulty]]

Latest revision as of 19:01, 30 May 2018

Assuming [math]100\frac{mA}{pulse}[/math] and a pulse width of [math]100ns[/math]

Then [math]100\frac{mA}{pulse}=100\frac{mC}{s*pulse}=0.1\frac{C}{s*pulse}[/math]

[math]0.1\frac{C}{s*pulse}(100ns)=10*10^{-9}\frac{C}{pulse}[/math]

[math]10*10^{-9}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=6.2422*10^{10}\frac{e-}{pulse}[/math]

OSL

[math]\frac{1}{100000}[/math] of a pulse. 624219 e- simulated, ~62bil e- per pulse. With beam parameters given above.

Deposited Energy: [math]332.987 MeV[/math]

OSL geometry: 0.501cm diameter cylinder of 0.03cm thickness with beam incident on flat face.

OSL Crystal density[math]=3.9698\frac{g}{cm^{3}}[/math]

Mass of a single OSL crystal: [math](\pi(0.2505)^{2}*(0.03))*(3.9698)=0.0234777g[/math]

Scaling deposited energy by 100000 to account for only shooting a 100000th of a pulse, the deposited energy becomes [math]33298.7*10^{3} MeV[/math]

Converting to Joules for dose calculation: [math]33298.7*10^{3} MeV=5.335039678*10^{-6}J[/math]

Average dose per pulse: [math]\frac{5.335039678*10^{-6}J}{0.0234777*10^{-3}\ Kg}=0.227239\ Gy=22.7239\ rad[/math]

Quartz

[math]\frac{1}{100000}[/math] of a pulse. 624219 e- simulated, ~62bil e- per pulse. With beam parameters given above.

Deposited Energy: [math]231633 MeV[/math]

Quartz Geometry: 1 inch diameter, 0.5 inch tall cylinder with electrons incident upon the base of the cylinder.

Quartz density[math]=2.32\frac{g}{cm^{3}}[/math]

Mass of Quartz used in simulation: [math](\pi(1.27)^{2}*(1.27))*(2.32)=14.9296g[/math]

Scaling deposited energy by 100000 to account for only shooting a 100000th of a pulse, the deposited energy becomes [math]23163300*10^{3}MeV[/math]

Converting to Joules for dose calculation: [math]23163300*10^{3} MeV=0.0037111696428064J[/math]

Average dose per pulse [math]\frac{0.0037111696428064\ J}{14.9296*10^{-3}\ Kg}=0.248577\ Gy=24.8577\ rad[/math]

Plastic

[math]\frac{1}{100000}[/math] of a pulse. 624219 e- simulated, ~62bil e- per pulse. With beam parameters given above.

Deposited Energy: [math]98595.1 MeV[/math]

Plastic Geometry: 1 inch diameter, 0.5 inch tall cylinder with electrons incident upon the base of the cylinder.

Plastic density[math]=0.94\frac{g}{cm^{3}}[/math]

Mass of Plastic used in simulation: [math](\pi(1.27)^{2}*(1.27))*(0.94)=6.43518g[/math]

Scaling deposited energy by 100000 to account for only shooting a 100000th of a pulse, the deposited energy becomes [math]9859510*10^{3}MeV[/math]

Converting to Joules for dose calculation: [math]9859510*10^{3}MeV=0.001579667586438J[/math]

Average dose per pulse [math]\frac{0.001579667586438\ J}{6.43518*10^{-3}\ Kg}=0.245474\ Gy=24.5474\ rad[/math]


Linac Run Plan April 2018, Dr. McNulty