Proton Bremsstrahlung
- [math]\sigma_{class}|_{90^o} = 2.1\times 10^{-31} cm^2/sterad[/math] = cross section for dipole radiation emitted at 90 degrees with respect to incident beam of particles scattered in a Coulomb field.
File:ProtonBrem Drell Huang PhysRev v99 n3 1955 pg686.pdf
Pluto event generator
A ROOT based Hadronic Simulation package based on Pluto
I installed Pluto V 5.14.1 on inca
I needed to set the environmental variables under tcsh
setenv ROOTSYS ~/src/ROOT/root
setenv PATH ${PATH}:${ROOTSYS}/bin
setenv LD_LIBRARY_PATH $ROOTSYS/lib
There is a subdirectory called "macros"
cd macros
Go to that subdirectory and type root, this will run the contents of the file "rootlogin.C"
cd macros
inca:~/src/Pluto/pluto_v5.14.1/macros> root
*******************************************
* *
* W E L C O M E to R O O T *
* *
* Version 5.17/03 30 August 2007 *
* *
* You are welcome to visit our Web site *
* http://root.cern.ch *
* *
*******************************************
Compiled on 5 September 2007 for linux with thread support.
CINT/ROOT C/C++ Interpreter version 5.16.24, July 26, 2007
Type ? for help. Commands must be C++ statements.
Enclose multiple statements between { }.
*********************************************************
* The Pluto event generator
* (C) HADES collaboration and all contributing AUTHORS
* www-hades.gsi.de/computing/pluto/html/PlutoIndex.html
* Version: 5.14.1
* Compiled on 10 December 2008
*********************************************************
Shared library Pluto.so loaded
to run a pp elastic model type
root [0] .x pp_elastic.C
a root ntuple is generate called "pp_elastic.root"
you can then analyze the data in the root file with
data->MakeClass();
the above command within root generates an analysis skeleton program.
using t.Show you can see the structure of the events within the ntuple. A few functions are also stored in the root tree which you can use.
You can use the root file event to create an input file which GEANT4 can then use as its event generator. GEANT4 then reads the events in and propagates them through your geometry.
Neutron Interactions
Name |
Energy
|
Cold Neutron |
micro eV
|
Thermal |
[math]\sim \frac{1}{40}[/math] eV
|
epithermal |
[math] \frac{1}{40} eV \rightarrow 100 keV[/math]
|
fast |
[math]100 keV \rightarrow 100 MeV[/math]
|
high energy |
[math] \gt 100 MeV[/math]
|
Note: Interaction length for neutrons is ~[math]10^{-13}[/math] .
Neutrons are even better than photons for penetrating matter.
Elastic scattering
File:Elastic scattering from Nuclei.jpg
[math]v_{CM} = \frac{m_n v_L + M(0)}{m_n + M} = \frac{v_0}{1 + \frac{M}{m_n}} = \frac{v_0}{1+A} =[/math] velocity of CM frame
[math]{v_L}^' = [/math] Magnitude of Neutron velocity in CM frame before and after collision
[math]= v_c - v_{CM} = v_0 -\frac{v_0}{1+A} = \frac{(1+A)-1}{1+A} v_0 = \frac{A}{1+A} v_0[/math]
[math] v = [/math] Magnitude of Nucleus velocity in CM frame before and after collision
[math]= v_{CM} = \frac{v_0}{1+A}[/math]
Note: In elastic collision only the particles direction changes.
[math]\vec{v}_L = {\vec{v}_L}^' + \vec{v}_{CM}[/math]
File:Rule of cosines.jpg
- [math]c^2 = a^2 + b^2 - 2abcos \theta[/math]
[math](v_L)^2 = ({v_L}^')^2 + (v_{CM})^2 - 2 v_{CM} {v_L}^' cos(\pi - {\theta}_{CM})=[/math]
- [math]= ({v_L}^')^2 + (V)^2 - 2 V {v_L}^' cos(\pi - {\theta}_{CM})=[/math]
where
- [math]({v_L}^')^2 = (\frac{A}{1+A})^2 {v_0}^2[/math]
- [math](V)^2 = (\frac{1}{1+A})^2 {v_0}^2[/math]
After substitution we get following:
[math](\frac{v_L}{v_0})^2 = \frac{A^2 +1 - 2 A cos(\pi - {\theta}_{CM})}{(1+A)^2} = \frac{A^2 +1 + 2 A cos({\theta}_{CM})}{(1+A)^2}[/math]
[math]
cos(A+/-B) = cosAcosB -/+ sinAsinB[/math]
[math]\frac{E}{E_0} = \frac{A^2 + 1 + 2Acos({\theta}_{CM})}{(1+A)^2}[/math]
when [math]{\theta}_{CM}=0[/math], [math]E_{max} = E_0[/math].
[math]E_{min} = \frac{(A-1)^2}{(A+1)^2} E_0 = (\frac{A-1}{A+1}) E_0 =[/math] Minimum energy of scattered Neutron in LAB frame.
File:Rule of cosines 1.jpg
[math]({v_L}^')^2 = (v_L)^2 + (v_{CM})^2 - 2 v_{CM} v_L cos(\pi - {\theta}_{CM})=[/math]
- [math]= (v_L)^2 + (V)^2 - 2 V v_L cos({\theta}_{L})=[/math]
[math](\frac{Av_0}{1+A})^2 = {v_L}^2 + (\frac{v_0}{1+A})^2 - 2 v_L (\frac{v_0}{1+A}) cos({\theta}_L)[/math]
After substituting [math]v_L[/math]
[math]cos{\theta}_L = [\frac{A^2 + 1 + 2 A cos{\theta}_{CM}}{(1+A)^2} + (\frac{1}{1+A})^2 - (\frac{A}{1+A})^2] \times \frac{(1+A)^2}{2\sqrt{A^2 +1 + 2Acos{\theta}_{CM}}} = [/math]
[math]= \frac{[A^2 +1 + 2Acos{\theta}_{CM} + 1 - A^2]}{2\sqrt{A^2 +1 + 2Acos{\theta}_{CM}}} = \frac{1 + Acos{\theta}_{CM}}{\sqrt{A^2 +1 + 2Acos{\theta}_{CM}}}
[/math]
Note: [math] {E_A}^{CM} = \frac{1}{2} M_A V^2 = \frac{1}{2} A m_n (\frac{v_0}{1+A})^2 = \frac{A}{(1+A)^2} \frac{m_n {v_0}^2}{2}= [/math]
[math] = \frac{A}{(1+A)^2}E_0 = [/math] Energy of recoil Nuclei in CM frame.
Conservation of Energy: [math]E_0 = E + E_A[/math]
- [math] E_A = E_0 - E = E_0 - \frac{A^2 + 1 + 2Acos{\theta}_{CM}}{(1+A)^2} E_0 = [/math]
- [math]\frac{(1+A)^2 - (A^2 +1 + 2Acos{\theta}_{CM})}{(1+A)^2}E_0 =[/math]
Lethargy
Lethargy[math] \equiv[/math] u[math] \equiv \ln \frac{E_0}{E}[/math] = logarithmic energy change
- =[math]\ln \left ( \frac{(1+A)^2} {A^2 + 1 + 2Acos{\theta}_{CM}} \right )[/math]
The average lethargy
[math]\lt u(\theta)\gt = \int u(\theta) \frac{d \Omega}{4 \pi}[/math]
- =[math]\frac{1}{2} \int \ln \left ( \frac{(1+A)^2} {A^2 + 1 + 2Acos{\theta}_{CM}} \right ) d[cos(\theta)][/math]
N = # of collisions = [math]\frac{\mbox{Desired Energy Change}}{\mbox{Average Energy change per collision}}[/math]
- [math]= \frac{\ln \left (\frac{E_0}{E} \right )}{1}[/math]
Inelastic Scattering
Simulations_of_Particle_Interactions_with_Matter