Overview
Particle Detection
A device detects a particle only after the particle transfers energy to the device.
Energy intrinsic to a device depends on the material used in a device
Some device of material with an average atomic number ([math]Z[/math]) is at some temperature ([math]T[/math]). The materials atoms are in constant thermal motion (unless T = zero degrees Klevin).
Statistical Thermodynamics tells us that the canonical energy distribution of the atoms is given by the Maxwell-Boltzmann statistics such that
[math]P(E) = \frac{1}{kT} e^{-\frac{E}{kT}}[/math]
[math]P(E)[/math] represents the probability of any atom in the system having an energy [math]E[/math] where
[math]k= 1.38 \times 10^{-23} \frac{J}{mole \cdot K}[/math]
Note: You may be more familiar with the Maxwell-Boltzmann distribution in the form
[math]N(\nu) = 4 \pi N \left ( \frac{m}{2\pi k T} \right ) ^{3/2} v^2 e^{-mv^2/2kT}[/math]
where [math]N(v) \Delta v[/math] would represent the molesules in the gas sample with speeds between [math]v[/math] and [math]v + \Delta v[/math]
Example 1 What is the probability that an atom in a 12.011 gram block of carbon would have and energy of 5 eV?
First lets check that the probability distribution is Normailized; ie: does [math]\int_0^{\infty} P(E) dE =1[/math]?
[math]\int_0^{\infty} P(E) dE = \int_0^{\infty} \frac{1}{kT} e^{-\frac{E}{kT}} dE = \frac{1}{kT} \frac{1}{\frac{1}{-kT}} e^{-\frac{E}{kT}} \mid_0^{\infty} = - [e^{-\infty} - e^0]= 1[/math]
[math]P(E=5eV)[/math] is calculated by integrating P(E) over some energy interval ( ie:[math] N(v) dv[/math]). I will arbitrarily choose 4.9 eV to 5.1 eV as a starting point.
[math]\int_{4.9 eV}^{5.1 eV} P(E) dE = - [e^{-5.1 eV/kT} - e^{4.9 eV/kT}][/math]
[math]k= (1.38 \times 10^{-23} \frac{J}{mole \cdot K} ) = (1.38 \times 10^{-23} \frac{J}{mole \cdot K} )(6.42 \times 10^{18} \frac{eV}{J})= 8.614 \times 10^{-5} \frac {eV}{mole \cdot K}[/math]
assuming a room empterature of [math]T=300 K[/math]
then[math]kT = 0.0258 \frac{eV}{mole}[/math]
and
[math]\int_{4.9 eV}^{5.1 eV} P(E) dE = - [e^{-5.1/0.0258} - e^{4.9/0.0258}] = 4.48 \times 10^{-83} - 1.9 \times 10^{-86} \approx 4.48 \times 10^{-83}[/math]
or in other words the precise mathematical calculation of calculating the probability may be approximated by just using the distribution function alone
[math]P(E=5eV) = e^{-5/0.0258} \approx 10^{-85}[/math]
This approximation breaks down as [math]E \rightarrow 0.0258 eV[/math]
The Monte Carlo method
A Unix Primer
A Root Primer
Example 1: Create Ntuple and Draw Histogram
Cross Sections
Deginitions
Example : Elastic Scattering
Lab Frame Cross Sections
Stopping Power
Bethe Equation
Classical Energy Loss
Bethe-Bloch Equation
Energy Straggling
Thick Absorber
Thin Absorbers
Range Straggling
Electron Capture and Loss
Multiple Scattering
Interactions of Electrons and Photons with Matter
Bremsstrahlung
Photo-electric effect
Compton Scattering
Pair Production
Hadronic Interactions
Neutron Interactions
Elastic scattering
Inelasstic Scattering