DiV MaxEnt

From New IAC Wiki
Jump to navigation Jump to search

go back


Dose Depth

  • Faddegon BA, Blevis I. Electron spectra derived from depth dose distributions Med Phys. 2000 Mar;27(3):514-26.
  • Alexei V. Chvetsov and George A. Sandison Reconstruction of electron spectra using singular component decomposition Med. Phys. 29, 578 (2002)
  • Chvetsov AV, Sandison GA Angular correction in reconstruction of electron spectra from depth dose distributions. Med Phys. 2003 Aug;30(8):2155-8.
  • R. Fischer, M. Mayer, W. von der Linden, and V. Dose Enhancement of the energy resolution in ion-beam experimentswith the maximum-entropy method Phys. Rev. E 55, 6667–6673 (1997)
  • Krmar M, Nikolić D, Krstonosić P, Cora S, Francescon P, Chiovati P, Rudić A. A simple method for bremsstrahlung spectra reconstruction from transmission measurements. Med Phys. 2002 Jun;29(6):932-8.
    • Wei J, Sandison GA, Chvetsov AV Reconstruction of electron spectra from depth doses with adaptive regularization. Med Phys. 2006 Feb;33(2):354-9.
  • Dusseau, L., Ranchoux, G. ; Polge, G. ; Plattard, D. ; Saigne, F. ; Bessiere, J.C. ; Fesquet, J. ; Gasiot, J., High energy electron dose-mapping using optically stimulated luminescent films Nuclear Science, Dec. 1999
  • Ezhov, V.V., Goncharov, D.V. ; Pushkarev, A.I. ; Remnev, G.E. ; Mikicha, J.A. Using of dosimetric film for analysis of energy density distribution of a high-current pulsed electron beam Science and Technology, 2005. KORUS 2005. Proceedings. The 9th Russian-Korean International Symposium
  • E. Breschi, M. Borghesi, M. Galimberti, D. Giulietti, L.A. Gizzi, L. Romagnani A new algorithm for spectral and spatial reconstruction of proton beams from dosimetric measurements Nucl. Instr. and Meth. Phys. Res. A, 2004, Pages 190–195

T. Tabata and R. Ito, The Passage of fast electrons through matter: The work at the Radiation Center of Osaka Prefecture and related topics

Electron Spectrum Reconstruction

  • Alexei V. Chvetsov and George A. Sandison Reconstruction of electron spectra using singular component decomposition Med. Phys. 29, 578 (2002)
  • Robert L. Wolpert; Katja Ickstadt Reflecting uncertainty in inverse problems: A Bayesian solution using Lévy processes Inverse Problems 2004;20(6):1759-1771
  • Wei J, Sandison GA, Chvetsov AV Reconstruction of electron spectra from depth doses with adaptive regularization. Med Phys. 2006 Feb;33(2):354-9.
  • Chvetsov AV, Sandison GA Angular correction in reconstruction of electron spectra from depth dose distributions. Med Phys. 2003 Aug;30(8):2155-8.
  • technical memorandum High energy electron beam energy determination through depth dose distribution June 26, 2002
  • T. Tabata and R. Ito, The Passage of fast electrons through matter: The work at the Radiation Center of Osaka Prefecture and related topics
  • E.T. Jaynes Predictive Statistical Mechanics
  • E.T. Jaynes Information theory and statistical mechanics


Bayesian

  • H. M. Franca, A. Maia, Jr., and C. P. Malta Maxwell Electromagnetic Theory, Planck's Radiation Law, and Bose-Einstein Statistics Foundations... 26, 1996
  • J. Aitchison On Coherence in Parametric Density Estimation Vol. 77, No. 4, Dec., 1990 > On Coherence in Para...
  • Anand G. Dabak , Don H. Johnson Relations between Kullback-Leibler distance and Fisher information (2002)
  • S. Kullback; R. A. Leibler. On Information and Sufficiency The Annals of Mathematical Statistics, Vol. 22, No. 1 (Mar., 1951), 79-86.
  • J. Tersoff and David Bayer Quantum Statistics for Distinguishable Particles Phys. Rev. Lett. 50, 2038–2038 (1983)
  • Shore, J., Johnson, R. Properties of cross-entropy minimization IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-27, NO, 4, JULY
  • Edwin T. Jaynes Prior Probabilities IEEE Transactions On Systems Science and Cybernetics, vol. sec-4, no. 3, 1968, pp. 227-241
  • M. Grendar, Jr., M. Grendar Maximum Probability and Maximum Entropy methods: Bayesian interpretation arXiv:physics/0308005v2 [physics.data-an] 9 Sep 2005
  • R E Nettleton Fisher information as thermodynamic entropy model in a classical fluid 2003 J. Phys. A: Math. Gen. 36 2443
  • Harremoes, P. Binomial and Poisson distributions as maximum entropy distributions IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 5, JULY 2001
  • E. T. Jaynes Information Theory and Statistical Mechanics Phys. Rev. 106, 620–630 (1957)
  • Robert K. Niven Combinatorial Information Theory: I. Philosophical Basis of Cross-Entropy and Entropy arXiv:cond-mat/0512017v5 [cond-mat.stat-mech] 20 Apr 2007
  • Robert L. Wolpert , Katja Ickstadt Reflecting Uncertainty in Inverse Problems: A Bayesian Solution using Lévy Processes INVERSE PROBLEMS 2004 1759--1771
  • ROBERT L. WOLPERT, KATJA ICKSTADT, MARTIN B. HANSEN A Nonparametric Bayesian Approach to Inverse Problems BAYESIAN STATISTICS 7, pp. 000–000 Oxford University Press, 2003
  • Ariel Caticha, Roland Preuss Maximum entropy and Bayesian data analysis: Entropic prior distributions Physical Review E - PHYS REV E , vol. 70, no. 4, 2004
  • R. Fischer, M. Mayer, W. von der Linden, and V. Dose Enhancement of the energy resolution in ion-beam experimentswith the maximum-entropy method Phys. Rev. E 55, 6667–6673 (1997)
  • Fischer, R.; Mayer, M.; von der Linden, W.; Dose, V. Energy resolution enhancement in ion beam experiments with Bayesian probability theory Nuclear Instruments and Methods in Physics Research Section B, Volume 136, Issue 1-4, p. 1140-1145.
  • W. Von der Linden , R. Preuss , V. Dose The Prior-Predictive Value: A Paradigm of Nasty Multi-Dimensional Integrals (1999)
  • R Fischer, W. Von Der Linden, V. Dose Adaptive Kernels And Occam's Razor In Inversion Problems Proceeding of the MaxEnt Conference 1996 South Africa


Informatics

  • Alfredo Luis, Alfonso Rodil Alternative measures of metrological resolution: contradictions and possible lack of limits PACS numbers: 03.65.Ta, 42.50.St, 42.50.Dv, Dated: January 15, 2012
  • Robert E. Kass The Geometry of Asymptotic Inference Statist. Sci. Volume 4, Number 3 (1989), 188-219.
  • Harold Jeffreys An Invariant Form for the Prior Probability in Estimation Problems
  • Bernardo Reference posterior distribution for bayesian inference
  • Sýkora, Stanislav, Quantum theory and the bayesian inference problems, Journal of Statistical Physics, Volume 11, Issue 1, 1974
  • M. Raviculé, M. Casas, and A. Plastino Information and metrics in Hilbert space Phys. Rev. A 55, 1695–1702 (1997)
  • P. W. Lamberti, A. P. Majtey, A. Borras, M. Casas, and A. Plastino Metric character of the quantum Jensen-Shannon divergence Phys. Rev. A 77, 052311 (2008)
  • Samuel L. Braunstein and Carlton M. Caves Statistical distance and the geometry of quantum states Phys. Rev. Lett. 72, 3439–3443 (1994)
  • W. K. Wootters Statistical distance and Hilbert space Phys. Rev. D 23, 357–362 (1981)
  • James O. Berger, Jose M. Bernardo and Dongchu Sun THE FORMAL DEFINITION OF REFERENCE PRIORS The Annals of Statistics 2009, Vol. 37, No. 2, 905–938


Drinking Bird Toy?

  • E. T. Jaynes Note on thermal heating efficiency Am. J. Phys. 71 ~2!, February 2003
  • Richard R. Annis Radioactive Battery 111604 Part one 6th August 1952
  • Ralph Lorenz Finite-time thermodynamics of an instrumented drinking bird toy Am. J. Phys. 74 (8), August 2006
  • E. T. Jaynes The Second Law as Physical Fact and as Human Inference


Random Walk?

  • Guth, Eugene New Class of Classical Uncertainty Relations Giving Uncertainty for Long and Certainty for Short Times Phys. Rev. 126, 1213–1215 (1962)
  • Joseph B. Keller Diffusion at finite speed and random walks PNAS Feb 3, 2004, vol. 101 no. 5
  • EUGENE C. ECKSTEIN, JEROME A. GOLDSTEIN, & MARK LEGGAS THE MATHEMATICS OF SUSPENSIONS: KAC WALKS AND ASYMPTOTIC ANALYTICITY Published July 10, 2000.
  • Peter Kostädt and Mario Liu Causality and stability of the relativistic diffusion equation Phys. Rev. D 62, 023003 (2000)
  • Peter Kostädt and Mario Liu On the Causality and Stability of the Relativistic Diffusion Equation Phys. Rev. D 62, 023003 (2000)
  • Josep M. Porr`a and Jaume Masoliver, George H. Weiss When the telegrapher's equation furnishes a better approximation to the transport equation than the diffusion approximation Phys. Rev. E 55, 7771–7774 (1997)
  • J Almaguer and H Larralde A relativistically covariant random walk J. Stat. Mech. (2007) P08019
  • Jaume Masoliver and George H Weiss Finite-velocity diffusion 1996 Eur. J. Phys. 17 190
  • E. Orsingher, A. De Gregorio Random Flights in Higher Spaces J Theor Prob, December 2007, Volume 20, Issue 4, pp 769-806
  • Stadje, Wolfgang Exact probability distributions for noncorrelated random walk models J Statist Physics, Volume 56, Issue 3-4, pp. 415-435
  • V Balakrishnan and S Lakshmibala On the connection between biased dichotomous diffusion and the one-dimensional Dirac equation 2005 New J. Phys. 7 11


QM?

  • R N Silver Quantum Statistical Inference Workshop on Physics and Computation (1992) Volume: 65, Issue: 4
  • Igor Vajda On Convergence of Information Contained in Quantized Observations IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 8, AUGUST 2002
  • John Skilling Probability and Geometry AIP Conf. Proc. 954, pp. 39-46


Sense of QM?

  • David S. Weiss, Brenton C. Young, and Steven Chu Precision measurement of the photon recoil of an atom using atomic interferometry Phys. Rev. Lett. 70, 2706–2709 (1993)
  • Z. Haba, H. Kleinert, Schrödinger wave functions from classical trajectories Physics Letters A Volume 294, Issues 3–4, 25 February 2002, Pages 139–142
  • Piotr Garbaczewski Relativistic problem of random flights and Nelson's stochastic mechanics Physics Letters A Volume 164, Issue 1, 6 April 1992, Pages 6–16
  • John S. Bell On the Einstein Podolsky Rosen paradox
  • A.F. KRACKLAUER, La “théorie” de Bell est-elle la plus grande méprise de l’histoire de la physique? Ann. Fond. Louis de Broglie, Vol. 25, n°2, 2000.
  • J. Avendaño, L. de la Peña, Reordering of the ridge patterns of a stochastic electromagnetic field by diffraction due to an ideal slit Phys. Rev. E 72, 066605 (2005)
  • L. Fortunato, S. De Baerdemacker, K. Heyde Solution of the Bohr hamiltonian for soft triaxial nuclei Phys.Rev. C74 (2006) 014310
  • C. P. Malta, Trevor S. Marshall , Emilio Santos Wigner density of a rigid rotator Phys. Rev. E 55, 2551–2556 (1997)
  • A. Garrett Lisi Quantum mechanics from a universal action reservoir arXiv:physics/0605068v1 [physics.pop-ph] 8 May 2006
  • B. Holdom Approaching quantum behavior with classical fields J.Phys.A39:7485,2006
  • H J Hrgovcic Discrete representations of the n-dimensional wave equation 1992 J. Phys. A: Math. Gen. 25 1329
  • Kwok Sau Fa Fokker-Planck equation with variable diffusion coefficient in the Stratonovich approach arXiv:cond-mat/0503331v2 [cond-mat.soft] 15 Mar 2005


Probability Distance?

  • Anand G. Dabak , Don H. Johnson Relations between Kullback-Leibler distance and Fisher information (2002)
  • Jianhua Lin, Divergence Measures Based on the Shannon Entropy IEEE TRANSACTIONS ON INFORMATION THEORY. VOL. 37, NO. I , JANUARY 1991
  • S.M. Ali and D. Silvey. A general class of coefficients of divergence of one distribution from another. J. Roy. Stat. Soc., Ser. B, 28: 131–142, 1966.


unnamed folder

  • Tommaso Toffoli, How much of physics is just computation?, Superlattices and Microstructures, 23, 381-406 (1998)
  • Norman Margolus, Lev B. Levitin The maximum speed of dynamical evolution Physica D 120 (1998) 188-195


MaxEnt Unfolding

  • E.T. jaynes Prior information and ambiguity in inverse problem SIAM-AMS Proceeding V14 1984
  • S.F. Gull and J. Skilling, Maximum Entropy Image Reconstruction: General Algorithm, Monthly Notices of the Royal Astronomical Society, Vol. 211, NO.1, P. 111, 1984
  • S.F. Gull and J. Skilling, Maximum entropy method in image processing', IEE PROCEEDINGS, Vol. 131, Pt. F, No. 6, OCTOBER 1984
  • J. M. Borwein, A. S. Lewis and D. Noll Maximum Entropy Reconstruction Using Derivative Information, Part 1: Fisher Information and Convex Duality
  • J. M. Borwein , A. S. Lewis , M. N. Limber , D. Noll Maximum Entropy Spectral Analysis Using Derivative Information Part 2: Computational Results
  • FRÖHNER F. H. Assigning uncertainties to scientific data
  • K. Zarb Adami Variational Methods in Bayesian Deconvolution PHYSTAT2003, SLAC, Stanford, California, September 8-11, 2003
  • Marcel Reginattoa, Paul Goldhagena, Sonja Neumannb, Spectrum unfolding, sensitivity analysis and propagation of uncertainties with the maximum entropy dec*Shore, J., Johnson, R. Properties of cross-entropy minimization IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-27, NO, 4, JULYonvolution code MAXED Nuclear Instruments and Methods in Physics Research Section A, Volume 476, Issues 1–2, 1 January 2002, PageAIP Conf. Proc. 954, pp. 39-46s 242–246
  • G. D'Agostini Improved iterative Bayesian unfolding arXiv:1010.0632v1 [physics.data-an] 4 Oct 2010
  • A. Mohammad-Djafari, Jérôme Idier A scale invariant Bayesian method to solve linear inverse problems arXiv:physics/0111125v1 [physics.data-an] 14 Nov 2001
  • Shikoh ITOH & Toshiharu TSUNODA Neutron Spectra Unfolding with Maximum Entropy and Maximum Likelihood Journal of Nuclear Science and Technology Volume 26, Issue 9, 1989
  • Yuan Qi, Thomas P. Minka, and Rosalind W. Picard Bayesian Spectrum Estimation of Unevenly Sampled Nonstationary Data EDICS: 2-TIFR, 2-SPEC
  • Aristidis C. Likas and Nikolas P. Galatsanos A Variational Approach for Bayesian Blind Image Deconvolution 2222 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 8, AUGUST 2004
  • U. Gerhardt, S. Marquardt, N. Schroeder, S. Weiss Bayesian deconvolution and analysis of photoelectron or any other spectra: Fermi-liquid versus marginal Fermi-liquid behavior of the 3d electrons in Ni Phys. Rev. B » Volume 58 » Issue 11
  • Jose M. Bioucas-Dias, Mario A. T. Figueiredo, and Joao P. Oliveira ADAPTIVE TOTAL VARIATION IMAGE DECONVOLUTION: A MAJORIZATION-MINIMIZATION APPROACH
  • Satoh, T., Matsui, A., Hirohata, T., Matsumoto, T. A hierarchical Bayesian deconvolution with positivity constraints 0-7803-5871-6/99/$10.00 1999 IEEE
  • Georgios Choudalakis Fully Bayesian Unfolding


MaxEnt General 1

  • Cox, R. T. Probability, Frequency and Reasonable Expectation American Journal of Physics, Volume 14, Issue 1, pp. 1-13 (1946)
  • Alfréd Rényi, On Measures of Entropy and Information Proc. Fourth Berkeley Symp. on Math. Statist. and Prob., Vol. 1 (Univ. of Calif. Press, 1961), 547-561.
  • CLAUDE E. SHANNON, Communication in the Presence of Noise, PROCEEDINGS OF THE IEEE, VOL. 86, NO. 2, FEBRUARY 1998 447
  • Jaynes, E. T., The Minimum Entropy Production Principle, Ann. Rev. Phys. Chem. 31, 579, 1980
  • Jaynes, E. T., Macroscopic Prediction, in Complex Systems - Operational Approaches, H. Haken (ed.), Springer-Verlag, Berlin, p. 254, 1985
  • Jaynes, E. T., Probability in Quantum Theory, in Complexity, Entropy, and the Physics of Information, W. H. Zurek (ed.), Addison-Wesley, Redwood City, CA, p. 381, 1990
  • Ariel Caticha, From Inference to Physics, Presented at MaxEnt 2008, the 28th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (July 8-13, 2008, Boraceia Beach, Sao Paulo, Brazil)
  • Ariel Caticha, Entropic Dynamics, Presented at MaxEnt 2001, the 21th International Workshop on Bayesian Inference and Maximum Entropy Methods (August 4-9, 2001, Baltimore, MD, USA)
  • Ariel Caticha, Updating Probabilities, Presented at MaxEnt 2006, the 26th International Workshop on Bayesian Inference and Maximum Entropy Methods (July 8-13, 2006, Paris, France)
  • Ariel Caticha, Relative Entropy and Inductive Inference, Presented at MaxEnt23, the 23rd International Workshop on Bayesian Inference and Maximum Entropy Methods (August 3-8, 2003, Jackson Hole, WY, USA)
  • Skilling, John, The Canvas of Rationality, BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: Proceedings of the 28th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP Conference Proceedings, Volume 1073, pp. 67-79 (2008).
  • Sýkora, Stanislav, Quantum theory and the bayesian inference problems, Journal of Statistical Physics, Volume 11, Issue 1, 1974
  • Shore, J., Johnson, R. Axiomatic Derivation of the Principle of Maximum Entropy and the Principle of Minimum Cross-Entropy

IEEE TRANSACTlIONS ON lNFORMATION THEORY, VOL. m26, NO. 1, JANUARY 1980

  • Shore, J., Johnson, R. Properties of cross-entropy minimization IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-27, NO, 4, JULY
  • Kevin H. Knuth, John Skilling, Foundations of Inference, Axioms 2012, 1(1):38-73
  • Kevin H. Knuth, The Origin of Probability and Entropy, Bayesian inference and Maximum Entropy Methods in Science and Engineering, Sao Paulo, Brazil, 2008
  • Y. Tikochinsky, Feynman Rules for Probability Amplitudes, International Journal of Theoretical Physics, Vol. 27, No. 5, 1988
  • Y. Tikochinsky*, N. Z. Tishby*, and R. D. Levine ,Consistent Inference of Probabilities for Reproducible Experiments, Phys. Rev. Lett. 52, 1357–J. M. Borwein, A. S. Lewis and D. Noll1360 (1984)
  • P. Ván Unique additive information measures - Boltzmann-Gibbs-Shannon, Fisher and beyond Physica A, 2006, V365, p28-33
  • Jos Uffink, The Constraint Rule of the Maximum Entropy Principle, Studies of the History and Philosophy of Modern Physics, 27, 47-49, 1996
  • Jos Uffink, Can the Maximum Entropy Principle Be Explained as a Consistency Requirement?, Stud.Hist.Phil.Mod.Phys. 26, 223-261, 1995
  • Tommaso Toffoli, How much of physics is just computation?, Superlattices and Microstructures, 23, 381-406 (1998)
  • Tommaso Toffoli, Action, Or the Fungibility of Computation, Feynman and Computation, 349-392 (1999)
  • Tommaso Toffoli, Occam, Turing, von Neumann, Jaynes: How much can you get for how little?, proceedings of the conference ACRI '94: Automi Cellulari per la Ricerca e l'Industria, Rende (CS), Italy, September 29--30, 1994
  • Plastino, A.; Plastino, A. R., On the universality of thermodynamics' Legendre transform structure, Physics Letters A 226 (1997) 257-263
  • A. Plastino, E. M. F. Curado, Equivalence between maximum entropy principle and enforcing dU=TdS, Phys. Rev. E 72, 047103 (2005)
  • A. Plastino, A. R. Plastino, B H Soffer, Fisher information and thermodynamics' 1st. law, arXiv:cond- mat/0509697 v2 28 Sep 2005
  • F. Pennini, A. Plastino, Heisenberg-Fisher thermal uncertainty measure, Phys. Rev. E 69, 057101 (2004)
  • F. Pennini and A. Plastino, Reciprocity relations between ordinary temperature and the Frieden-Soffer Fisher temperature, Phys. Rev. E 71, 047102 (2005)
  • A. Hernando, A. Plastino, A. R. Plastino, MaxEnt and dynamical information, arXiv:1201.0889v1 [physics.data-an] 4 Jan 2012
  • Michael E. Fisher Solution of a Combinatorial Problem—Intermediate Statistics American Journal of Physics -- January 1962 -- Volume 30, Issue 1, pp. 49
  • B. Roy Frieden and Bernard H. Soffer Lagrangians of physics and the game of Fisher-information transfer Phys. Rev. E 52, 6917–6917 (1995)
  • Humphrey J. Maris and Leo P. Kadanoff Teaching the renormalization group American Journal of Physics -- June 1978 -- Volume 46, Issue 6, pp. 652
  • W. K. Wootters Statistical distance and Hilbert space Phys. Rev. D 23, 357–362 (1981)
  • Kurt Wiesenfeld Resource Letter: ScL-1: Scaling laws American Journal of Physics -- September 2001 -- Volume 69, Issue 9, pp. 938
  • V Dose Bayesian inference in physics: case studies 2003 Rep. Prog. Phys. 66 1421
  • Anand G. Dabak , Don H. Johnson Relations between Kullback-Leibler distance and Fisher information (2002)


MaxEnt General 2

  • Sattin, F. Bayesian approach to superstatistics European Physical Journal B -- Condensed Matter;Jan2006, Vol. 49 Issue 2, p219
  • Oliver Johnson A conditional Entropy Power Inequality for dependent variables IEEE Transactions on Information Theory, Vol 50/8, 2004, p. 1581-1583
  • M. Grendar, Jr., M. Grendar Maximum Probability and Maximum Entropy methods: Bayesian interpretation AIP (Melville), 490-494, 2004
  • Ekrem Aydiner, Cenk Orta, Ramazan Sever Quantum information entropies of the eigenstates of the Morse potential Int. J. Mod. Phys. B Vol 22 (2008) 231
  • Robert K. Niven Exact Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac Statistics Physics Letters A, 13/5/05
  • A. M. C. Souza, C. Tsallis Stability of the entropy for superstatistics Physics Letters A 319, 273 (2003)
  • S N Karbelkar On the axiomatic approach to the maximum entropy principle of inference Pramana April 1986, Volume 26, Issue 4, pp 301-310
  • Garrett, Anthony J. M. Maximum entropy from the laws of probability AIP Conference Proceedings; 2001, Vol. 568 Issue 1, p3
  • A. G. Bashkirov Renyi entropy as a statistical entropy for complex systems Theoretical and Mathematical Physics, November 2006, Volume 149, Issue 2, pp 1559-1573
  • Marco Masi Generalized information-entropy measures and Fisher information
  • Manfred Jaeger Measure selection: Notions of rationality and representation independence (1998) Proceedings of the 14th conference on Uncertainty in Artificial Intelligence
  • L Velazquez Fluctuation geometry: A counterpart approach of inference geometry
  • Peter Beerli Comparison of Bayesian and maximum-likelihood inference of population genetic parameters
  • W. Von , W. von der Linden , R. Preuss , V. Dose The Prior-Predictive Value: A Paradigm of Nasty Multi-Dimensional Integrals (1999)
  • Magni, P., Bellazzi, R. ; De Nicolao, G., Bayesian function learning using MCMC methods
  • John Archibald Wheeler ‘‘On recognizing ‘law without law,’ ’’ Oersted Medal Response at the joint APS–AAPT Meeting, New York, 25 January 1983
  • Brillouin, L. The Negentropy Principle of Information
  • L. Brillouin Maxwell's Demon Cannot Operate: Information and Entropy. I J. Appl. Phys. 22, 334 (1951)
  • Marcel Reginatto Derivation of the equations of nonrelativistic quantum mechanics using the principle of minimum Fisher information Phys. Rev. A 58, 1775–1778 (1998)
  • Takuya Yamano On the robust thermodynamical structures against arbitrary entropy form and energy mean value
  • Lucy, L. B. An iterative technique for the rectification of observed distributions Astronomical Journal, Vol. 79, p. 745 (1974)
  • Mendes, R. S. Some general relations in arbitrary thermostatistics Physica A, Volume 242, Issue 1-2, p. 299-308.
  • R E Nettleton Fisher and Jaynesian statistics compared in the description of classical fluids Journal of Physics A: Mathematical and General Volume 35 Number 2
  • Piotr Garbaczewski Entropy methods in random motion Acta Phys. Pol. B 37, 1503-1520, (2006)
  • Samuel L. Braunstein and Carlton M. Caves Statistical distance and the geometry of quantum states Phys. Rev. Lett. 72, 3439–3443 (1994)
  • Pöschel T, Ebeling W, Frömmel C, Ramírez R. Correction algorithm for finite sample statistics. Eur Phys J E Soft Matter. 2003 Dec;12(4):531-41.
  • Don H. Johnson and Sinan Sinanovi´c Symmetrizing the Kullback-Leibler distance
  • Sinan Sinanović , Don H. Johnson Toward a theory of information processing Signal Processing Volume 87, Issue 6, June 2007, Pages 1326–1344
  • S.M. Ali and D. Silvey. A general class of coefficients of divergence of one distribution from another. J. Roy. Stat. Soc., Ser. B, 28: 131–142, 1966.
  • By H. Haken Application of the Maximum Entropy Principle to Nonlinear Systems Far from Equilibrium
  • S. Ciulli1, M. Mounsif, N. Gorman, and T. D. Spearman On the application of maximum entropy to the moments problem J. Math. Phys. 32, 1717 (1991)


MaxEnt General 3

  • Dr V. Dimitrov some notes 14 pages
  • R N Silver Quantum Statistical Inference Workshop on Physics and Computation (1992) Volume: 65, Issue: 4
  • Alexis Akira Toda Unification of Maximum Entropy and Bayesian Inference via Plausible Reasoning IEEE Transactions on Information Theory on March 8, 2011
  • John C. Baez, Tobias Fritz, Tom Leinster A Characterization of Entropy in Terms of Information Loss Entropy 2011, 13(11), 1945-1957
  • Petr Jizba, Toshihico Arimitsu The world according to Renyi: Thermodynamics of multifractal systems Annals Phys. 312 (2004) 17-57
  • Imre Csiszár Axiomatic Characterizations of Information Measures Entropy 2008, 10, 261-273
  • B.Lesche Renyi entropies and observables
  • Abe S. Stability of Tsallis entropy and instabilities of Rényi and normalized Tsallis entropies: a basis for q-exponential distributions. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Oct; 66
  • Jizba P, Arimitsu T. Observability of Rényi's entropy. Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb; 69
  • Paul Snow. Inference using conditional probabilities despite prior ignorance. IEEE Transactions on Systems, Man, and Cybernetics, Part A 26(3):349-360 (1996)
  • Trevor W. Marshall Nonlocality - The party may be over
  • Trevor Marshall, Emilio Santos Stochastic optics: A reaffirmation of the wave nature of light Foundations of Physics February 1988, Volume 18, Issue 2, pp 185-223
  • Choice of Priors for Low-dimensional Parameters
  • Piero G. Luca Mana Consistency of the Shannon entropy in quantum experiments Phys. Rev. A 69, 062108 (2004)
  • R E Nettleton Fisher and Jaynesian statistics compared in the description of classical fluids 2002 J. Phys. A: Math. Gen. 35 295
  • G D'Agostini Bayesian inference in processing experimental data: principles and basic applications 2003 Rep. Prog. Phys. 66 1383
  • Arthur Baraov The exchange paradox: a misapplication of the principle of indifference
  • B. Roy Frieden, B. H. Soffer A CRITICAL COMPARISON OF THREE INFORMATION-BASED APPROACHES TO PHYSICS Foundations of Physics Letters February 2000, Volume 13, Issue 1, pp 89-96