Kiwi Dipole Mappings

From New IAC Wiki
Jump to navigation Jump to search

Kiwi Dipole Documents

Cad drawing of kiwi dipole:

File:Hrrl pos wiki dipole 1.pdf File:Hrrl pos wiki dipole 2.pdf File:Hrrl pos wiki dipole 3.pdf File:Hrrl pos wiki dipole 4.pdf File:Hrrl pos wiki dipole 5.pdf

Bending Radius of the kiwi dipole is 318.5 mm, and it bends beam by 45 degree.

The path of the beam in the dipole then [math] S = \rho \times \theta = 318.5 \times \pi/4 = 318.5 \times 3.14159265 / 4 = 250.149315~ mm[/math]

1st Mapping

File:Kiwi Dipole Magnet Mappings.pdf

Tag Number: 079220

Bending magnet that was to be used with LCS (compact magnets) The horizontal and vertical tranlator have a range for 150 mm i.e. 15 cm.

Power on I = 20.4 A

x (mm) y (mm) B (kG)
127 0 [math] -6.7 \times 10^{-2} [/math]
127 10 -0.106
127 20 -0.169
127 30 -0.2729
127 40 -0.448
127 50 -0.728
127 60 -0.97
127 70 -1.025
127 80 -1.029
127 90 -1.03
127 100 -1.029
127 110 -1.028
127 120 -1.028
127 130 -1.028
127 140 -1.028
127 150 -1.028
y = 150 mm is roughly center of the bend.
127 150 -1.028
127 140 -1.031
127 130 -1.0342
127 120 -1.036
127 110 -1.036
127 100 -1.036
127 90 -1.036
127 80 -1.0355
127 70 -1.03
127 60 -0.977
127 50 -0.7354
127 40 -0.4527
127 30 -0.275
127 20 -0.17
127 10 -0.1066
127 0 -0.0673
Again
x (mm) y (mm) B (kG)
127 0 [math] -0.0672 [/math]
127 10 -0.1062
127 20 -0.1699
127 30 -0.2738
127 40 -0.449
127 50 -0.7283 edge of poles 100 px
127 60 -0.9712
127 70 -1.0253
127 80 -1.03
127 90 -1.03
127 100 -1.0298
127 110 -1.028
127 120 -1.0285
127 130 -1.0286
127 140 -1.0282
127 150 -1.0278



     y (mm)      B (kG)   error B (kG)
    0.00000    -0.06717     0.00015
   10.00000    -0.10627     0.00031
   20.00000    -0.16963     0.00055
   30.00000    -0.27390     0.00105
   40.00000    -0.44990     0.00248
   50.00000    -0.73057     0.00419
   60.00000    -0.97273     0.00374
   70.00000    -1.02677     0.00280
   80.00000    -1.03150     0.00350
   90.00000    -1.03200     0.00346
  100.00000    -1.03160     0.00383
  110.00000    -1.03067     0.00462
  120.00000    -1.03083     0.00448
  130.00000    -1.03027     0.00342
  140.00000    -1.02907     0.00168
  150.00000    -1.02793     0.00012

Mapping Figure 079220 X127 I204A.png

X at 127, Y at 150

x (mm) y (mm) I B (kG)
127 150 20.1 -1.0279
127 150 30.1 -1.53
127 150 25.1 -1.2916
127 150 20.1 -1.0359
127 150 15 -0.781
127 150 10 -0.534
127 150 5 -0.277
127 150 0 -0.017
Again
127 150 0 -0.01726
127 150 5 -0.266
127 150 10 -0.518
127 150 15 -0.7713
127 150 20 -1.02
127 150 25 -1.272
127 150 30 -1.52



  I (Amps)    B (kG)    error B (kG)
   0.00000   -0.01713    0.00018
   5.00000   -0.27150    0.00778
  10.00000   -0.52600    0.01131
  15.00000   -0.77615    0.00686
  20.00000   -1.02795    0.01124
  25.00000   -1.28180    0.01386
  30.00000   -1.52500    0.00707

Mapping Figure 079220 X127 Y150.png

Vertical Scan

Power on I = 20 A

Gap width [math] \approx [/math]5cm.

x (mm) y (mm) B (kG)
135 (lower edge) 150 -1.0369
132 150 -1.0379
129 150 -1.0382
126 150 -1.0384
123 150 -1.0385
120 150 -1.0386
118 150 -1.0387
116 150 -1.0388
114 150 -1.039


   x (mm)      y(mm)       B(kG)
  135.0000   150.0000    -1.0369
  132.0000   150.0000    -1.0379
  129.0000   150.0000    -1.0382
  126.0000   150.0000    -1.0384
  123.0000   150.0000    -1.0385
  120.0000   150.0000    -1.0386
  118.0000   150.0000    -1.0387
  116.0000   150.0000    -1.0388
  114.0000   150.0000    -1.0390

Mapping Figure 079220 X127 I120.png

Horizontal Scan

go for X = 124.5, y = 150 (dipole center), I = 20 A.


x (mm) y (mm) I (A) B (kG)
124.5 150 20 -1.0388
124.5 140 20 -1.04
124.5 130 20 -1.04
124.5 120 20 -1.0409
124.5 110 20 -1.041
124.5 100 20 -1.0411
124.5 90 20 -1.041
124.5 80 20 -1.0408
124.5 70 20 -1.355 This data is problematic.
124.5 60 20 -0.9799
124.5 50 20 -0.74
124.5 40 20 -0.457
124.5 30 20 -0.2776
124.5 20 20 -0.1718
124.5 0 20 -0.0684


Figure according to the data above. There is problem when y = 70 mm. Mapping Figure 079220 X1245 I20 original.png

   x (mm)      y  (mm)       I (A)      B  (kG)   
  124.50000   150.00000    20.00000    -1.03880
  124.50000   140.00000    20.00000    -1.04000
  124.50000   130.00000    20.00000    -1.04000
  124.50000   120.00000    20.00000    -1.04090
  124.50000   110.00000    20.00000    -1.04100
  124.50000   100.00000    20.00000    -1.04110
  124.50000    90.00000    20.00000    -1.04100
  124.50000    80.00000    20.00000    -1.04080
  124.50000    70.00000    20.00000    -1.03550
  124.50000    60.00000    20.00000    -0.97990
  124.50000    50.00000    20.00000    -0.74000
  124.50000    40.00000    20.00000    -0.45700
  124.50000    30.00000    20.00000    -0.27760
  124.50000    20.00000    20.00000    -0.17180
  124.50000     0.00000    20.00000    -0.06840

Figure according to the data above. The problem when y = 70 mm is changed to -1.0355 Mapping Figure 079220 X1245 I20 amended.png


Power on X = 124.5, Y = 150

x (mm) y (mm) I (A) B (kG)
124.5 150 0 -0.0123
124.5 150 5 -0.2676
124.5 150 10 -0.516
124.5 150 15 -0.771
124.5 150 20 -1.028
124.5 150 25 -1.2735
124.5 150 30 -1.5217
124.5 150 30 -1.5218
124.5 150 25 -1.287
124.5 150 20 -1.037
124.5 150 15 -0.7855
124.5 150 10 -0.5313
124.5 150 5 -0.2747
124.5 150 0 -0.0164


    I (A)      B(kG)    error B(kG) 
  30.00000   -1.52175    0.00007
  25.00000   -1.28025    0.00955
  20.00000   -1.03250    0.00636
  15.00000   -0.77825    0.01025
  10.00000   -0.52365    0.01082
   5.00000   -0.27115    0.00502
   0.00000   -0.01435    0.00290


Mapping Figure 079220 X1245 Y150 amended.png

Tag Number: 42125

x (mm) y (mm) I (A) B (kG)
0 0 Power off [math]-3 \times 10^{-4}[/math]
0 0 20 [math]-6 \times 10^{-3}[/math]
111.75 0 20 [math] 0.0405[/math]



x (mm) y (mm) I (A) B (kG)
111.75 10 20 0.0637
111.75 20 20 0.102
111.75 30 20 0.1675
111.75 40 20 0.2774
111.75 50 20 0.4654
111.75 60 20 0.756
111.75 70 20 0.9898
111.75 80 20 1.0312
111.75 90 20 1.0358
111.75 100 20 1.0362
111.75 110 20 1.0363
111.75 120 20 1.0363
111.75 130 20 1.0362
111.75 140 20 1.036
111.75 150 20 1.036
111.75 0 20 0.0402
111.75 10 20 0.0635
111.75 20 20 0.1022
111.75 30 20 0.1674
111.75 40 20 0.2773
111.75 50 20 0.4652
111.75 60 20 0.755
111.75 70 20 0.9828
111.75 80 20 1.0312
111.75 90 20 1.0358
111.75 100 20 1.0362
111.75 110 20 1.0362
111.75 120 20 1.03625
111.75 130 20 1.0362
111.75 140 20 1.036
111.75 150 20 1.036



x (mm) y (mm) I (A) B (kG)
111.75 150 0 0.0076
111.75 150 5 0.263
111.75 150 10 0.52
111.75 150 15 0.7754
111.75 150 20 1.0313
111.75 150 25 1.2869
111.75 150 30 1.5389
111.75 150 30 1.5389
111.75 150 25 1.3
111.75 150 20 1.0484
111.75 150 15 0.7945
111.75 150 10 0.534
111.75 150 5 0.276
111.75 150 0 0.01386



x (mm) y (mm) I (A) B (kG)
123.25 150 20 1.0339
120.25.25 150 20 1.0338
117.25 150 20 1.034
114.25 150 20 1.034
111.25 150 20 1.0342
111.25 150 20 1.0343
108.25 150 20 1.0342
105.25 150 20 1.0343
102.25 150 20 1.0344
99.25 150 20 1.03435



x (mm) y (mm) I (A) B (kG)
111.25 150 20 1.0339
111.25 0 20 0.04
111.25 10 20 0.0633
111.25 20 20 0.102
111.25 30 20 0.1671
111.25 40 20 0.2767
111.25 50 20 0.4643
111.25 60 20 0.7544
111.25 70 20 0.9818
111.25 80 20 1.0295
111.25 90 20 1.034
111.25 100 20 1.0344
111.25 110 20 1.0345
111.25 120 20 1.0345
111.25 130 20 1.0345
111.25 140 20 4.0343
111.25 150 20 10.342
111.25 0 20 0.04
111.25 10 20 0.0632
111.25 20 20 0.1018
111.25 30 20 0.1669
111.25 40 20 0.2767
111.25 50 20 0.4639
111.25 60 20 0.754
111.25 70 20 0.9816
111.25 80 20 1.0294
111.25 90 20 1.034
111.25 100 20 1.0344
111.25 110 20 1.0344
111.25 120 20 1.0344
111.25 130 20 1.0343
111.25 140 20 4.0342
111.25 150 20 10.342



x (mm) y (mm) I (A) B (kG)
111.25 43 mm 0 [math]3.6 \times 10^{-3}[/math]
111.25 43 mm 5 0.0822
111.25 43 mm 10 0.1615
111.25 43 mm 15 0.242
111.25 43 mm 20 0.3227
111.25 43 mm 25 0.4014
111.25 43 mm 30 0.4793
111.25 43 mm 0 [math]2.8 \times 10^{-3}[/math]
111.25 43 mm 5 0.08
111.25 43 mm 10 0.1613
111.25 43 mm 15 0.242
111.25 43 mm 20 0.3215
111.25 43 mm 25 0.4
111.25 43 mm 30 0.4783


2nd Mapping

Bending radius of dipole is 319 mm. The bending radius in measurement is r = 280 mm.

Mapping of the dipole was divided into 3 parts according to the path of the ideal particle. This trajectory of particle with ideal energy should go through a fringe field (approximately straight line) and dipole field (rotation of near 45 degree with dipole bending radius of 319 mm), and another fringe field (approximately straight line). We called them A2 (entering fringe field), Rotation and A1 (Exiting fringe field).

A2

       I= - 6.5 A	I= - 15.25 A	I= - 24 A	I= - 33 A		
Z(mm) 	B (G)	        B (G)	         B (G)	         B (G)		
81.50	-55.2500	-128.3700	200.6800	-273.6085		
82.50	-52.6000	-122.1600	-191.0000	-260.3194		
83.50	-50.0700	-116.2700	-181.7600	-247.6903		
84.50	-47.6700	-110.6800	-173.0100	-235.7135		
85.50	-45.4000	-105.3700	-164.6920			
87.50	-41.1800	-95.5400	-149.2710	-203.2767		
89.50	-37.3800	-86.6600	-135.3760	-184.2830		
91.50	-33.9600	-78.6600	-122.8530	-167.1615		
93.50	-30.8600	-71.4600	-111.5640	-151.7285		
95.50	-28.0800	-64.9700	-101.3870	-137.8432		
98.00	-25.1200	-57.7600	-90.1060	-122.3860		
100.00	-22.8900	-52.6200	-82.0500	-111.3860		
103.00	-19.9800	-45.8400	-71.4230	-96.9286		
105.00	-18.2600	-41.8600	-65.1930	-88.3740		
110.00	-14.6600	-33.5200	-52.1380	-70.5650		
115.00	-11.8500	-27.1700	-41.9210			
120.00	-9.6500 	-22.0600	-34.0260	-45.8887		
130.00	-6.5400 	-14.8400	-22.9290	-30.7577		
140.00	-4.5600	        -10.2500	-15.7670	-21.0309		
150.00	-3.2600	        -7.2600	        -11.0980	-14.7070		


A1

       I= - 6.505 A	I= - 15.25 A		I= - 24 A	        I= - 33 A
Z(mm) 	B (G)	         B (G)		        Z(mm) 	B (G)	        B (G)
137.50	-69.4460	-160.7070		137.50	-252.3900	-342.9800
136.50	-66.4320	-153.7000		136.50	-241.2700	-328.0530
135.50	-63.5170	-146.9330		135.50	-230.6500	-313.6100
134.50	-60.7320	-140.4650		134.50	-220.5150	-299.7060
133.50	-58.0720	-134.2840		133.50	-210.8160	-286.0330
132.50		        -128.3450		133.00	-206.0800	-279.6640
132.00	-54.3030	-125.5330		132.00	-197.0500	-267.3660
131.00	-51.9270	-120.0150		131.00	-188.4130	-255.5850
130.00	-49.6620	-114.7500		130.00	-180.1390	-244.2880
128.00	-45.4210	-104.9110		128.00	-164.6400	-223.1900
126.00	-41.5550	-95.9450		126.00	-150.5300	-204.0060
124.00	-38.0300	-87.7600		124.00	-137.6900	-186.4830
122.00	-34.8100	-80.2900		122.00	-125.9700	-170.5440
120.00	-31.8780	-73.4860		120.00	-115.2900	-156.0020
118.00	-29.2060	-67.2900		118.00	-105.5500	-142.7470
116.00	-26.7690	-61.6400		116.00	-96.6900	-130.6987
114.00	-24.6392	-56.5000		114.00	-88.6240	-119.7218
112.00	-22.6060	-51.5000		112.00	-81.2700	-109.7030
110.00	-20.7550	-47.5500		110.00	-74.5700	-100.6170
105.00	-7.6170	        -38.4870		105.00	-60.3500	-81.2724
100.00	-13.6900	-31.3000		100.00	-49.0700	-65.9450
95.00	-11.2000	-25.6840		95.00	-40.1000	-53.7603
90.00	-9.2140	        -21.1000		90.00	-32.9500	-44.0770
85.00	-7.6170	        -17.4250		85.00	-27.3370	-36.3176
80.00	-6.3283	        -14.4650		80.00	-22.6950	-30.0751
70.00	-4.4300	        -10.1160		70.00	-15.8800	-20.9880
60.00	-3.1525   	-7.2000 		60.00	-11.3140	-14.8445
50.00	-2.2720 	-5.2060 		50.00	-8.1950 	-10.6612
40.00	-1.6530 	-3.8125 		40.00	-6.0240 	-7.7550
30.00	-1.2085 	-2.8200 		30.00	-4.4750 	-5.6980
20.00	-1.8830 	-2.1020 	 	20.00	-3.3570 	-4.2240
10.00	-0.6410 	-1.5740 		10.00	-2.3800 	-3.1460
0.00	-0.4590 	-1.1800 		0.00	-1.9360 	-0.3540


Rotation

 I= - 6.505 A			I= - 15.25 A			I= - 24 A			I= - 33 A	
 Theta    B 		        Theta    B		        Theta    B		        Theta    B
(degree) (G)                   (degree) (G)                    (degree) (G)                    (degree) (G)
0.00	0.0288		        0.00	-0.1150		        0.00	-0.1540		        0.00	-0.2640
55.00	-61.9200		55.00	-148.7800		55.00	-230.0300		55.00	-316.2940
55.50	-68.2600		55.25	-155.1740		55.50	-263.5000		55.25	-332.5850
55.60	-69.6200		55.40	-159.6800		55.40	-248.7940		55.30	-335.9620
55.55	-69.9400		55.45	-161.2270		55.60	-258.7300		55.40	-342.2980
56.00	-75.2000		55.50	-162.7950					        55.50	-348.8980
57.00	-91.6000		56.00	-179.4560		56.00	-279.6800		55.60	-355.9930
58.00	-112.0400		57.00	-218.6250		57.00	-341.2300		56.00	384.8570
59.00	-137.5000		58.00	-267.4440		58.00	-417.3400		57.00	-468.7430
60.00	-169.3500		59.00	-328.7500		59.00	-512.4800		58.00	-573.3970
61.00	-208.8200		60.00	-404.8500		60.00	-631.2200		59.00	-704.0110
62.00	-254.4200		61.00	-498.4100		61.00	-777.3000		60.00	-867.4160
63.00	-298.9400		62.00	605.4600		62.00	-944.5000		61.00	-1068.4410
64.00	-327.8700		63.00	-706.3700		63.00	-1102.0000		62.00	1297.4500
65.00	-340.4800		64.00	-771.0200		64.00	-1203.0000		63.00	-1514.5900
66.00	-345.0700		65.00	-299.3600		65.00	-1247.3000		64.00	1653.1900
67.00	-346.7200		66.00	-809.8500		66.00	-1263.7700		65.00	1714.0200
68.00	-347.3000		67.00	-813.6000		67.00	-1269.6000		66.00	1736.4600
69.00	-347.5400		68.00	-814.9900		68.00	-1271.8000		67.00	1744.4900
70.00	-347.6100		69.00	-815.4800		69.00	-1272.6800		68.00	1747.3940
72.00	-347.7000		70.00	-815.6800		70.00	-1273.0000		69.00	-1748.6040
74.00	-347.7800		72.00	-815.8400		72.00	-1273.3000		70.00	1749.0000
76.00	-347.9000		74.00	-816.0100		74.00	-1273.6000		72.00	1749.3300
78.00	-347.9200		76.00	-816.2300		76.00	-1273.9500		74.00	-1749.7370
80.00	-348.0000		78.00	-816.4200		78.00	-1274.2700		76.00	-1750.1000
82.00	-348.0200		80.00	-816.5400		80.00	-1274.5000		78.00	-1750.4300
84.00	0.0500		        82.00	-816.6400		82.00	-1274.7000		80.00	-1750.6940
86.00	-348.0700		84.00	-816.7200		84.00	-1274.8700		82.00	-1751.0460
88.00	-348.1000		86.00	-816.8700		86.00	-1275.1000		84.00	-1751.2660
90.00	-348.1200		88.00	-817.0000		88.00	-1275.3500		86.00	-1751.5740
92.00	-348.1200		90.00	-817.0800		90.00	-1275.5000		88.00	-1751.8930
94.00	-348.1300		92.00	-817.1700		92.00	-1275.6000		90.00	-1752.0800
96.00	-348.1200		94.00	-817.2500		94.00	-1275.7700		92.00	-1752.2120
98.00	-348.1000		96.00	-817.3100		96.00	-1275.9000		94.00	-1752.3660
100.00	-348.0700		98.00	-817.3200		98.00	-1275.8500		96.00	-1752.4760
102.00	-348.0400		100.00	-817.2600		100.00	-1275.7600		98.00	-1752.4210
103.00	-348.0100		102.00	-817.2100		102.00	-1275.6000		100.00	-1752.2230
104.00	-347.9200		103.00	-817.1200		103.00	-1275.4500		102.00	-1752.0030
105.00	-347.6700		104.00	-816.9100		104.00	-1275.1100		103.00	-1751.8050
106.00	-346.8200		105.00	-816.2700		105.00			        104.00	-1751.3320
107.00	-343.8600		106.00	-813.9200		106.00	-1270.3000		105.00	-1749.8250
108.00	-334.4600		107.00	-805.8400		107.00	-1257.6000		106.00	-1744.7540
109.00	-303.6700		108.00	-778.4700		108.00	-1214.5200		107.00	-1727.3300
109.50	-280.2300		109.00	-704.9500		109.00	-1099.7000		108.00	-1668.2600
110.00	-253.5100		109.50	-648.9400		109.50	-1012.5200		108.50	1604.0420
110.50	-226.2950		110.00	-587.0300		110.00	-915.9200		109.00	-1510.1900
111.00	-201.0330		110.50	-524.0800		110.50	-817.5300		109.50	1389.5200
112.00	-156.6420		111.00	-465.1000		111.00	-725.0000		110.00	-1256.9700
113.00	-122.1500		112.00	-362.9700		112.00	-565.5800		110.50	-1122.2200
113.50	-108.0300		113.00	-283.0300		113.00	-440.9100		111.00	-996.0170
114.00	-95.7700                 								112.00	-777.0400
115.00	-75.4300		114.00	-221.4100		114.00	-345.2400		113.00	-605.7040
116.00	-59.7560		115.00	-174.4670		115.00	-272.1800		113.50	-535.4470
116.25	-56.3900		116.00	-138.0970		116.00	-214.8900		114.00	-474.2650
116.30	-55.7380		116.25	-130.2390		116.25	-202.6770		115.00	-373.6700
116.40	-54.4500		116.30	-128.6700		116.30	-200.3710		116.25	-295.8560
116.35	-55.0800		116.40	-125.6880		116.40	-195.7000		116.30	-275.3740
116.33	-55.3180		116.50	-122.7610		116.50	-191.1400		116.35	-272.1400
180.00	-0.1100 	 	180.00	-0.1970 		117.00	-170.1670		116.40	-268.9280
                                                                180.00	-0.1900 		116.50	-262.6151
                                                                                                116.60	-256.8720
                                                                                                117.00	-233.8292
                                                                                                180.00	-0.2970


Mapping Origin

File:Hrrl wiki dipole map Origin File.txt

Mapping data and are under the curve

-6.5 A

Mapping at -6.5 Amp.

S	B
mm	G
Beam	Magnetic 
Path   Field
0	-5.996
5	-7.024
10	-8.265
15	-9.766
20	-11.596
25	-13.836
30	-16.596
35	-20.011
40	-24.25
45	-29.55
50	-35.96
55	-44.25
60	-54.67
65	-67.776
70	-84.225
75	-104.806
80	-130.495
85	-162.485
90	-202.426
92	-221.08
94	-241.527
96	-263.96
98	-288.57
100	-315.31
102	-344.89
104	-377.23
105.11	-395.22
107.9	-447.35
110.68	-505.17
113.46	-576.45
116.24	-629.02
119.02	-686.3
121.81	-733.05
124.59	-766.68
127.37	-788.63
132.94	-809.26
138.5	-815.77
144.07	-817.76
149.63	-818.35
155.2	-818.59
166.33	-818.79
177.46	-819.04
188.58	-819.25
199.71	-819.45
210.84	-819.59
221.97	-819.72
233.1	-819.86
244.23	-820
255.36	-820.16
266.49	-820.3
277.62	-820.4
288.75	-820.43
294.32	-820.4
305.44	-820.38
311.01	-820.24
316.57	-819.74
322.14	-817.73
324.92	-815.06
327.7	-809.82
330.49	-799.64
333.27	-780.86
336.05	-749.13
338.83	-700.97
341.62	-639.14
344.4	-570.24
347.18	-500.24
349.96	-435.41
352.75	-377.2
355.53	-326.14
356.53	-305.79
358.53	-275.51
360.53	-248.38
362.53	-224.38
365.53	-192.56
368.53	-165.48
371.53	-142.4
372.53	-135.47
377.53	-105.75
382.53	-82.85
387.53	-65.196
392.53	-51.56
397.53	-41.05
402.53	-32.897
412.53	-21.705
422.53	-14.625
447.53	-6.12
472.53	-2.94

Area under the curve

[4/18/2012 01:47 "" (2456035)]
integ1
 Input
   iy = [Book1]6A!(A"S",B"B")
   type = 0 (math:Mathematical Area)
   plot = 0
 Output
   oy = [Book1]6A!(,C"Integrated Y1")
   x1 = 0
   x2 = 472.53
   i1 = 1
   i2 = 85
   area = -90700.3274
   y0 = -353.05
   x0 = 272.06
   dx = 245.38386115956

-15.25 A

Mapping at -15.25 Amp.

S	B
mm	G
Beam	Magnetic 
Path   Field
0	-5.996
5	-7.024
10	-8.265
15	-9.766
20	-11.596
25	-13.836
30	-16.596
35	-20.011
40	-24.25
45	-29.55
50	-35.96
55	-44.25
60	-54.67
65	-67.776
70	-84.225
75	-104.806
80	-130.495
85	-162.485
90	-202.426
92	-221.08
94	-241.527
96	-263.96
98	-288.57
100	-315.31
102	-344.89
104	-377.23
105.11	-395.22
107.9	-447.35
110.68	-505.17
113.46	-576.45
116.24	-629.02
119.02	-686.3
121.81	-733.05
124.59	-766.68
127.37	-788.63
132.94	-809.26
138.5	-815.77
144.07	-817.76
149.63	-818.35
155.2	-818.59
166.33	-818.79
177.46	-819.04
188.58	-819.25
199.71	-819.45
210.84	-819.59
221.97	-819.72
233.1	-819.86
244.23	-820
255.36	-820.16
266.49	-820.3
277.62	-820.4
288.75	-820.43
294.32	-820.4
305.44	-820.38
311.01	-820.24
316.57	-819.74
322.14	-817.73
324.92	-815.06
327.7	-809.82
330.49	-799.64
333.27	-780.86
336.05	-749.13
338.83	-700.97
341.62	-639.14
344.4	-570.24
347.18	-500.24
349.96	-435.41
352.75	-377.2
355.53	-326.14
356.53	-305.79
358.53	-275.51
360.53	-248.38
362.53	-224.38
365.53	-192.56
368.53	-165.48
371.53	-142.4
372.53	-135.47
377.53	-105.75
382.53	-82.85
387.53	-65.196
392.53	-51.56
397.53	-41.05
402.53	-32.897
412.53	-21.705
422.53	-14.625
447.53	-6.12
472.53	-2.94


Area under the curve

[4/18/2012 02:17 "" (2456035)]
integ1
 Input
   iy = [Book1]15A!(A"S",B"B")
   type = 0 (math:Mathematical Area)
   plot = 0
 Output
   oy = [Book1]15A!(,C"Integrated Y1")
   x1 = 0
   x2 = 472.53
   i1 = 1
   i2 = 87
   area = -210413.9633
   y0 = -820.43
   x0 = 288.75
   dx = 245.25506096565

24 A

Mapping at - 24 A Amp.

S	B
mm	G
Beam	Magnetic 
Path   Field
0	-9.243
5	-10.843
10	-12.773
15	-15.12
20	-17.98
25	-21.488
30	-25.808
35	-30.97
40	-37.575
45	-45.83
50	-56.175
55	-69.179
60	-85.536
65	-106.117
70	-131.394
75	-164.266
80	-204.61
85	-254.866
90	-317.34
92	-346.6
94	-378.67
96	-413.85
98	-452.39
100	-494.75
102	-541.15
104	-591.94
105.11	-615.64
107.9	-696.51
110.68	-787.1
113.46	-884.2
116.24	-979.92
119.02	-1069.3
121.81	-1142.4
124.59	-1195
127.37	-1229.2
130.15	-1249.7
132.94	-1261.3
138.5	-1271.5
144.07	-1274.7
149.63	-1275.7
155.2	-1276.2
166.33	-1276.7
177.46	-1277
188.58	-1277.5
199.71	-1277.9
210.84	-1278.2
221.97	-1278.4
233.1	-1278.7
244.23	-1279
255.36	-1279.2
266.49	-1279.44
277.62	-1279.56
288.75	-1279.52
294.32	-1279.46
299.88	-1279.4
305.44	-1279.26
311.01	-1279
316.57	-1278.17
322.14	-1275
324.92	-1270.8
327.7	-1262.6
330.49	-1246.67
333.27	-1217.4
336.05	-1167.8
338.83	-1092.5
341.62	-996.14
344.4	-888.66
347.18	-779.86
349.96	-679.2
352.75	-588.1
355.53	-508.2
356.53	-481.38
358.53	-433.77
360.53	-391.15
362.53	-353
365.53	-302.89
368.53	-260.44
371.53	-224.09
372.53	-213.18
377.53	-166.37
382.53	-130.298
387.53	-102.48
392.53	-81.009
397.53	-64.45
402.53	-51.6
412.53	-33.78
422.53	-22.83
447.53	-9.45
472.53	-4.46


Area under the curve

[4/18/2012 02:22 "" (2456035)]
integ1
 Input
   iy = [Book1]24A!(A"S",B"B")
   type = 0 (math:Mathematical Area)
   plot = 0
 Output
   oy = [Book1]24A!(,C"Integrated Y1")
   x1 = 0
   x2 = 472.53
   i1 = 1
   i2 = 89
   area = -328194.84795
   y0 = -1279.56
   x0 = 277.62
   dx = 245.22443902201

33 A

Mapping at - 33 Amp.

S	B
mm	G
Beam	Magnetic 
Path   Field
0	-11.425
5	-13.417
10	-15.828
15	-18.25
20	-22.315
25	-26.683
30	-31.873
35	-38.504
40	-46.74
45	-57.044
50	-69.95
55	-86.175
60	-106.593
65	-132.263
70	-164.517
75	-204.863
80	-255.216
85	-317.7
90	-395.93
92	-432.4
94	-472.48
96	-516.44
98	-564.64
100	-617.51
102	-675.33
104	-738.69
105.11	-767.57
107.9	-868.32
110.68	-980.56
113.46	-1101.2
116.24	-1220.8
119.02	-1331.6
121.81	-1422.5
124.59	-1487.8
127.37	-1530.3
130.15	-1558.4
132.94	-1570.3
138.5	-1582.9
144.07	-1586.9
149.63	-1588.2
155.2	-1588.74
166.33	-1589.3
177.46	-1589.8
188.58	-1590.37
199.71	-1590.73
210.84	-1591.05
221.97	-1591.4
233.1	-1591.8
244.23	-1592.07
255.36	-1592.3
266.49	-1592.4
277.62	-1592.7
288.75	-1592.7
294.32	-1592.6
299.88	-1592.46
305.44	-1592.3
311.01	-1592
316.57	-1590.9
322.14	-1586.97
324.92	-1581.7
327.7	-1571.5
330.49	-1551.8
333.27	-1515.25
336.05	-1453.6
338.83	-1360
341.62	-1239.46
344.4	-1105.5
347.18	-969.8
349.96	-844.62
352.75	-732.05
355.53	-632.51
356.53	-597.3
358.53	-538.2
360.53	-485.2
362.53	-437.7
365.53	-375.37
368.53	-322.4
371.53	-277.28
372.53	-263.9
377.53	-205.84
382.53	-161.1
387.53	-126.58
392.53	-99.94
397.53	-79.38
402.53	-63.56
412.53	-41.35
422.53	-27.64
447.53	-11.3
472.53	-5.193


Area under the curve

[4/18/2012 02:23 "" (2456035)]
integ1
 Input
   iy = [Book1]30A!(A"S",B"B")
   type = 0 (math:Mathematical Area)
   plot = 0
 Output
   oy = [Book1]30A!(,C"Integrated Y1")
   x1 = 0
   x2 = 472.53
   i1 = 1
   i2 = 89
   area = -408481.827
   y0 = -1592.7
   x0 = 277.62
   dx = 245.24936698806

Effective B-Field

Effective B-field = (Area Under the Curve) / (Beam path in dipole)

Scan Current Area Under the Curve (G*mm) Beam path in dipole (mm) Effective B-field (G)
-6.50A -90700.3274 250.149315 -362.584752
-15.25A -210413.9633 250.149315 -841.153466
-24A -328194.84795 250.149315 -1 311.99579
-33 A -408481.827 250.149315 -1 632.95201


Coil current vs Electron Beam Energy

Magnet (or momentum) rigidity: [math] p = qB\rho [/math]

p is momentum of the particle. q is the charge of the particle. [math] \rho [/math] is the bending radius of the dipole. B is magnetic filed strength.

For an electron

Unit Conversion

[math] p [kg*m/s]= e*B*\rho [/math]

[math] p / (5.36704629 \times 10^{-19}) [GeV/C]= e*B*\rho [/math]

[math] p [GeV/C]= 0.299792458*B*\rho [/math]

1 Gauss is [math] 10^{-4} [/math] Tesla

Coil Current (Amp) dipole (m) Effective B-field (T) P [MeV/c]
-6.50 0.3185 -0.0362584752 3.46210054
-15.25 0.3185 -0.0841153466 8.03166116
-24 0.3185 -0.131199579 12.5274472
-33 0.3185 -0.163295201 15.5920623


[math] E^2= P^2 + m_e^2[/math]

Coil Current (Amp) P [MeV/c] En using field map (MeV) Corresponding En from table (MeV)
-6.50 3.46210054 3.49960871 2.403
-15.25 8.03166116 8.04790047 (6.129+6.350)/2
-24 12.5274472 12.5378648 10.095
-33 15.5920623 15.6004336 14.064



Coil           En 
Current 
(Amp)          (MeV)
6.50 	 	3.49960871
15.25 	 	8.04790047
24 	 	12.5378648
33 	 	15.6004336

Fitting for En vs I

Hrrl-wiki-dip-mag-map-En vs I.png

matlab Poly fit method

S =

       R: [3x3 double]
      df: 1
   normr: 0.3244


table =

   6.5000    3.4996    3.4261    0.0735
  15.2500    8.0479    8.2673   -0.2194
  24.0000   12.5379   12.3216    0.2163
  33.0000   15.6004   15.6708   -0.0704

MATLAB Polyfit Fit for En vs I: En = 0.66503 + 0.66503I + -0.00514I^2

Matrix Inversion Method

Matrix Inversion Method Fit for En vs I: En = (-0.67944+-2.18159) + (0.66503+-0.25773)I + (-0.00514+-0.00639)I^2

average of two method

0.014 + (0.665+-0.258)I + (-0.00514+-0.00639)I^2

Estimation for En vs I

Current (A) Energy (MeV)

          	0.1	0.080
          	0.2	0.147
          	0.3	0.213
          	0.4	0.279
          	0.5	0.345
          	0.6	0.411
          	0.7	0.477
          	0.8	0.543
          	0.9	0.608
          	1	0.674
          	1.1	0.739
          	1.2	0.805
          	1.3	0.870
          	1.4	0.935
          	1.5	1.000
          	1.6	1.065
          	1.7	1.130
          	1.8	1.194
          	1.9	1.259
          	2	1.323
          	2.1	1.388
          	2.2	1.452
          	2.3	1.516
          	2.4	1.580
          	2.5	1.644
          	2.6	1.708
          	2.7	1.772
          	2.8	1.836
          	2.9	1.899
          	3	1.963
          	3.1	2.026
          	3.2	2.089
          	3.3	2.153
          	3.4	2.216
          	3.5	2.279
          	3.6	2.341
          	3.7	2.404
          	3.8	2.467
          	3.9	2.529
          	4	2.592
          	4.1	2.654
          	4.2	2.716
          	4.3	2.778
          	4.4	2.840
          	4.5	2.902
          	4.6	2.964
          	4.7	3.026
          	4.8	3.088
          	4.9	3.149
          	5	3.211
          	5.1	3.272
          	5.2	3.333
          	5.3	3.394
          	5.4	3.455
          	5.5	3.516
          	5.6	3.577
          	5.7	3.638
          	5.8	3.698
          	5.9	3.759
          	6	3.819
          	6.1	3.879
          	6.2	3.939
          	6.3	3.999
          	6.4	4.059
          	6.5	4.119
          	6.6	4.179
          	6.7	4.239
          	6.8	4.298
          	6.9	4.358
          	7	4.417
          	7.1	4.476
          	7.2	4.536
          	7.3	4.595
          	7.4	4.654
          	7.5	4.712
          	7.6	4.771
          	7.7	4.830
          	7.8	4.888
          	7.9	4.947
          	8	5.005
          	8.1	5.063
          	8.2	5.121
          	8.3	5.179
          	8.4	5.237
          	8.5	5.295
          	8.6	5.353
          	8.7	5.410
          	8.8	5.468
          	8.9	5.525
          	9	5.583
          	9.1	5.640
          	9.2	5.697
          	9.3	5.754
          	9.4	5.811
          	9.5	5.868
          	9.6	5.924
          	9.7	5.981
          	9.8	6.037
          	9.9	6.094
          	10	6.150
          	10.1	6.206
          	10.2	6.262
          	10.3	6.318
          	10.4	6.374
          	10.5	6.430
          	10.6	6.485
          	10.7	6.541
          	10.8	6.596
          	10.9	6.652
          	11	6.707
          	11.1	6.762
          	11.2	6.817
          	11.3	6.872
          	11.4	6.927
          	11.5	6.982
          	11.6	7.036
          	11.7	7.091
          	11.8	7.145
          	11.9	7.200
          	12	7.254
          	12.1	7.308
          	12.2	7.362
          	12.3	7.416
          	12.4	7.470
          	12.5	7.523
          	12.6	7.577
          	12.7	7.630
          	12.8	7.684
          	12.9	7.737
          	13	7.790
          	13.1	7.843
          	13.2	7.896
          	13.3	7.949
          	13.4	8.002
          	13.5	8.055
          	13.6	8.107
          	13.7	8.160
          	13.8	8.212
          	13.9	8.264
          	14	8.317
          	14.1	8.369
          	14.2	8.421
          	14.3	8.472
          	14.4	8.524
          	14.5	8.576
          	14.6	8.627
          	14.7	8.679
          	14.8	8.730
          	14.9	8.781
          	15	8.833
          	15.1	8.884
          	15.2	8.934
          	15.3	8.985
          	15.4	9.036
          	15.5	9.087
          	15.6	9.137
          	15.7	9.188
          	15.8	9.238
          	15.9	9.288
          	16	9.338
          	16.1	9.388
          	16.2	9.438
          	16.3	9.488
          	16.4	9.538
          	16.5	9.587
          	16.6	9.637
          	16.7	9.686
          	16.8	9.735
          	16.9	9.784
          	17	9.834
          	17.1	9.883
          	17.2	9.931
          	17.3	9.980
          	17.4	10.029
          	17.5	10.077
          	17.6	10.126
          	17.7	10.174
          	17.8	10.222
          	17.9	10.271
          	18	10.319
          	18.1	10.367
          	18.2	10.414
          	18.3	10.462
          	18.4	10.510
          	18.5	10.557
          	18.6	10.605
          	18.7	10.652
          	18.8	10.699
          	18.9	10.746
          	19	10.793
          	19.1	10.840
          	19.2	10.887
          	19.3	10.934
          	19.4	10.981
          	19.5	11.027
          	19.6	11.073
          	19.7	11.120
          	19.8	11.166
          	19.9	11.212
          	20	11.258
          	20.1	11.304
          	20.2	11.350
          	20.3	11.395
          	20.4	11.441
          	20.5	11.486
          	20.6	11.532
          	20.7	11.577
          	20.8	11.622
          	20.9	11.667
          	21	11.712
          	21.1	11.757
          	21.2	11.802
          	21.3	11.847
          	21.4	11.891
          	21.5	11.936
          	21.6	11.980
          	21.7	12.024
          	21.8	12.068
          	21.9	12.112
          	22	12.156
          	22.1	12.200
          	22.2	12.244
          	22.3	12.287
          	22.4	12.331
          	22.5	12.374
          	22.6	12.418
          	22.7	12.461
          	22.8	12.504
          	22.9	12.547
          	23	12.590
          	23.1	12.633
          	23.2	12.675
          	23.3	12.718
          	23.4	12.761
          	23.5	12.803
          	23.6	12.845
          	23.7	12.887
          	23.8	12.929
          	23.9	12.971
          	24	13.013
          	24.1	13.055
          	24.2	13.097
          	24.3	13.138
          	24.4	13.180
          	24.5	13.221
          	24.6	13.262
          	24.7	13.304
          	24.8	13.345
          	24.9	13.386
          	25	13.427
          	25.1	13.467
          	25.2	13.508
          	25.3	13.548
          	25.4	13.589
          	25.5	13.629
          	25.6	13.669
          	25.7	13.710
          	25.8	13.750
          	25.9	13.790
          	26	13.829
          	26.1	13.869
          	26.2	13.909
          	26.3	13.948
          	26.4	13.988
          	26.5	14.027
          	26.6	14.066
          	26.7	14.105
          	26.8	14.144
          	26.9	14.183
          	27	14.222
          	27.1	14.261
          	27.2	14.299
          	27.3	14.338
          	27.4	14.376
          	27.5	14.414
          	27.6	14.453
          	27.7	14.491
          	27.8	14.529
          	27.9	14.566
          	28	14.604
          	28.1	14.642
          	28.2	14.679
          	28.3	14.717
          	28.4	14.754
          	28.5	14.792
          	28.6	14.829
          	28.7	14.866
          	28.8	14.903
          	28.9	14.940
          	29	14.976
          	29.1	15.013
          	29.2	15.049
          	29.3	15.086
          	29.4	15.122
          	29.5	15.158
          	29.6	15.195
          	29.7	15.231
          	29.8	15.266
          	29.9	15.302
          	30	15.338
          	30.1	15.374
          	30.2	15.409
          	30.3	15.445
          	30.4	15.480
          	30.5	15.515
          	30.6	15.550
          	30.7	15.585
          	30.8	15.620
          	30.9	15.655
          	31	15.689
          	31.1	15.724
          	31.2	15.759
          	31.3	15.793
          	31.4	15.827
          	31.5	15.861
          	31.6	15.895
          	31.7	15.929
          	31.8	15.963
          	31.9	15.997
          	32	16.031
          	32.1	16.064
          	32.2	16.098
          	32.3	16.131
          	32.4	16.164
          	32.5	16.197
          	32.6	16.230
          	32.7	16.263
          	32.8	16.296
          	32.9	16.329
          	33	16.362
          	33.1	16.394
          	33.2	16.426
          	33.3	16.459
          	33.4	16.491
          	33.5	16.523
          	33.6	16.555
          	33.7	16.587
          	33.8	16.619
          	33.9	16.651
          	34	16.682
          	34.1	16.714
          	34.2	16.745
          	34.3	16.776
          	34.4	16.808
          	34.5	16.839
          	34.6	16.870
          	34.7	16.900
          	34.8	16.931
          	34.9	16.962
          	35	16.993
          	35.1	17.023
          	35.2	17.053
          	35.3	17.084
          	35.4	17.114
          	35.5	17.144
          	35.6	17.174
          	35.7	17.204
          	35.8	17.233
          	35.9	17.263
          	36	17.293
          	36.1	17.322
          	36.2	17.351
          	36.3	17.381
          	36.4	17.410
          	36.5	17.439
          	36.6	17.468
          	36.7	17.496
          	36.8	17.525
          	36.9	17.554
          	37	17.582
          	37.1	17.611
          	37.2	17.639
          	37.3	17.667
          	37.4	17.695
          	37.5	17.723
          	37.6	17.751
          	37.7	17.779
          	37.8	17.807
          	37.9	17.834
          	38	17.862
          	38.1	17.889
          	38.2	17.917
          	38.3	17.944
          	38.4	17.971
          	38.5	17.998
          	38.6	18.025
          	38.7	18.051
          	38.8	18.078
          	38.9	18.105
          	39	18.131
          	39.1	18.157
          	39.2	18.184
          	39.3	18.210
          	39.4	18.236
          	39.5	18.262
          	39.6	18.288
          	39.7	18.313
          	39.8	18.339
          	39.9	18.365
          	40	18.390
          	40.1	18.415
          	40.2	18.441
          	40.3	18.466
          	40.4	18.491
          	40.5	18.516
          	40.6	18.540
          	40.7	18.565
          	40.8	18.590
          	40.9	18.614
          	41	18.639
          	41.1	18.663
          	41.2	18.687
          	41.3	18.711
          	41.4	18.735
          	41.5	18.759
          	41.6	18.783
          	41.7	18.807
          	41.8	18.830
          	41.9	18.854
          	42	18.877
          	42.1	18.900
          	42.2	18.923
          	42.3	18.947
          	42.4	18.970
          	42.5	18.992
          	42.6	19.015
          	42.7	19.038
          	42.8	19.060
          	42.9	19.083
          	43	19.105
          	43.1	19.127
          	43.2	19.150
          	43.3	19.172
          	43.4	19.194
          	43.5	19.215
          	43.6	19.237
          	43.7	19.259
          	43.8	19.280
          	43.9	19.302
          	44	19.323
          	44.1	19.344
          	44.2	19.365
          	44.3	19.386
          	44.4	19.407
          	44.5	19.428
          	44.6	19.449
          	44.7	19.469
          	44.8	19.490
          	44.9	19.510
          	45	19.531
          	45.1	19.551
          	45.2	19.571
          	45.3	19.591
          	45.4	19.611
          	45.5	19.630
          	45.6	19.650
          	45.7	19.670
          	45.8	19.689
          	45.9	19.708
          	46	19.728
          	46.1	19.747
          	46.2	19.766
          	46.3	19.785
          	46.4	19.804
          	46.5	19.823
          	46.6	19.841
          	46.7	19.860
          	46.8	19.878
          	46.9	19.897
          	47	19.915
          	47.1	19.933
          	47.2	19.951
          	47.3	19.969
          	47.4	19.987
          	47.5	20.004
          	47.6	20.022
          	47.7	20.040
          	47.8	20.057
          	47.9	20.074
          	48	20.091
          	48.1	20.109
          	48.2	20.126
          	48.3	20.142
          	48.4	20.159
          	48.5	20.176
          	48.6	20.193
          	48.7	20.209
          	48.8	20.225
          	48.9	20.242
          	49	20.258
          	49.1	20.274
          	49.2	20.290
          	49.3	20.306
          	49.4	20.322
          	49.5	20.337
          	49.6	20.353
          	49.7	20.368
          	49.8	20.384
          	49.9	20.399
          	50	20.414
          	50.1	20.429
          	50.2	20.444
          	50.3	20.459
          	50.4	20.474
          	50.5	20.488
          	50.6	20.503
          	50.7	20.517
          	50.8	20.532
          	50.9	20.546
          	51	20.560
          	51.1	20.574
          	51.2	20.588
          	51.3	20.602
          	51.4	20.615
          	51.5	20.629
          	51.6	20.642
          	51.7	20.656
          	51.8	20.669
          	51.9	20.682
          	52	20.695
          	52.1	20.708
          	52.2	20.721
          	52.3	20.734
          	52.4	20.747
          	52.5	20.759
          	52.6	20.772
          	52.7	20.784
          	52.8	20.797
          	52.9	20.809
          	53	20.821
          	53.1	20.833
          	53.2	20.845
          	53.3	20.856
          	53.4	20.868
          	53.5	20.880
          	53.6	20.891
          	53.7	20.902
          	53.8	20.914
          	53.9	20.925
          	54	20.936
          	54.1	20.947
          	54.2	20.958
          	54.3	20.968
          	54.4	20.979
          	54.5	20.989
          	54.6	21.000
          	54.7	21.010
          	54.8	21.020
          	54.9	21.030
          	55	21.041
          	55.1	21.050
          	55.2	21.060
          	55.3	21.070
          	55.4	21.080
          	55.5	21.089
          	55.6	21.098
          	55.7	21.108
          	55.8	21.117
          	55.9	21.126
          	56	21.135
          	56.1	21.144
          	56.2	21.153
          	56.3	21.161
          	56.4	21.170
          	56.5	21.178
          	56.6	21.187
          	56.7	21.195
          	56.8	21.203
          	56.9	21.211
          	57	21.219
          	57.1	21.227
          	57.2	21.235
          	57.3	21.242
          	57.4	21.250
          	57.5	21.257
          	57.6	21.265
          	57.7	21.272
          	57.8	21.279
          	57.9	21.286
          	58	21.293
          	58.1	21.300
          	58.2	21.307
          	58.3	21.313
          	58.4	21.320
          	58.5	21.326
          	58.6	21.332
          	58.7	21.339
          	58.8	21.345
          	58.9	21.351
          	59	21.357
          	59.1	21.362
          	59.2	21.368
          	59.3	21.374
          	59.4	21.379
          	59.5	21.385
          	59.6	21.390
          	59.7	21.395
          	59.8	21.400
          	59.9	21.405
          	60	21.410
          	60.1	21.415
          	60.2	21.419
          	60.3	21.424
          	60.4	21.428
          	60.5	21.433
          	60.6	21.437
          	60.7	21.441
          	60.8	21.445
          	60.9	21.449
          	61	21.453
          	61.1	21.457
          	61.2	21.460
          	61.3	21.464
          	61.4	21.467
          	61.5	21.471
          	61.6	21.474
          	61.7	21.477
          	61.8	21.480
          	61.9	21.483
          	62	21.486
          	62.1	21.489
          	62.2	21.491
          	62.3	21.494
          	62.4	21.496
          	62.5	21.498
          	62.6	21.501
          	62.7	21.503