Anisotropic n's vs. isotropic ones
Revision as of 01:14, 27 June 2011 by Shaproma (talk | contribs) (→Anisotropic n's vs. isotropic ones)
Motivation: there are a lot of source of isotropic neutrons=
1. Winhold and Halpern, Phys.Rev. 103 4, 990 (1956).
- The observation were consistent with the assumption that
- anisotropic fission is due solely to photons with-in about
- 3 MeV of the fission threshold".
- The photons in the giant resonance region were found
- to produce essentially isotropic fission
2. A lot of other papers.
3. Isotropic neutrons from (
,n) channel and ( ,2n) channelAnisotropic n's vs. isotropic ones
Say, we have only anisotropic neutrons with 1.25 calculated ratio:
The calculated asymmetry would be:
Now, say, we have extra 100 isotropic neutrons for each detector:
The total number of neutrons become:
So the calculated asymmetry would be:
- So if we would have about the same number of isotropic and anisotropic neutrons that would be reduced the expectation values of asymmetry almost in two times!!!.
- We need to count isotropic and anisotropic neutrons to estimate the effect of washing out the anisotropy by isotropic neutrons.
Source of anisotropic neutrons:
- ( ,f) channel due to photons with-in about 3 MeV of the fission threshold
Source of isotropic neutrons:
- ( ,f) channel due to photons out of 3 MeV of the fission threshold
- ( ,n) channel.
- ( ,2n) channel.
U Photo-fission Cross Section
Let's count isotropic and anisotropic neutrons
Assume most conservative:
Source of anisotropic neutrons:
- ( ,f) channel for all incident gammas. In reality the number of anisotropic neutrons will reduce with increasing the energy of gammas.
Source of isotropic neutrons:
- ( ,n) channel
- ( ,2n) channel
We can calculate the relative number of neutrons from different channels using formulas:
Using root to approximate sigma's by appropriate polynomials and using Maple to estimate integrals I found: