Lab 17 RS

From New IAC Wiki
Jump to navigation Jump to search

Go Back to All Lab Reports


The JFET (Junction Field Effect Transistor n-channel)


File:JFET MPF102 DataSheet.pdf

JFET MPF102 Pinouts.png


1). Complete the table below for the JFET.

Characteristic Symbol Min Max Unit
Zero-Gate-Voltage Drain Current [math] I_{DSS}[/math] 2.0 20 mAdc
Gate-Source Cutoff Voltage [math]V_{GS(off)}[/math] - -8.0 Vdc
[math]P_{max}[/math]
[math]R_G[/math] 3.3 M[math]\Omega[/math]
[math]R_D[/math] 1.0 M[math]\Omega[/math]
[math]y_{fs}[/math]
[math]y_{is}[/math]
[math]y_{os}[/math]


2.) Construct the JFET circuit below.

TF EIM Lab17Circuit.png

3.) Plot measurements of [math]I_D[/math] -vs- [math]V_{DS}[/math] by varying [math]V_{dd}[/math] for [math]\left | V_{GS}\right |[/math] = 0, 0.5, 1.0, 1.5 V. (40 pnts)

I have used the following resistors:

[math]R_G = (3.34 \pm 0.02)\ M\Omega[/math]
[math]R_D = (0.968 \pm 0.002)\ k\Omega[/math]

Below is the table with my measurements of voltages [math]V_{DS}[/math] and [math]V_{R_D}[/math] and calculation of the current [math]I_D[/math]. Here I have used the meter to measure directly the voltage drop between the drain and source [math]V_{DS}[/math] and to measure the voltage drop on resistor [math]R_D[/math].

So my calculated current becomes:

[math]I_D = \frac{V_{R_D}}{R_D}[/math].


Table01.png

Table02.png

Table03.png

Table04.png


And below I have plotted four curves [math]I_D[/math] as function of [math]V_{DS}[/math] for four different values of [math]V_{GS}[/math]


L17 id vs vgs.png


4.) Plot [math] I_D[/math] -vs- [math]V_{GS}[/math] (30 pnts)

For every measured [math]V_{GS}[/math] values I have picked up the current [math]I_D[/math] values in the middle of saturation region of each line as follow:


Table21.png


And below is my plot of [math] I_D[/math] -vs- [math]V_{GS}[/math]:


L17 id vs vgs 21.png

5.) Calculate [math]y_{fs}[/math] for your JFET (20 pnts)

For common source configuration JFET:

[math]y_{fs} \equiv  \left ( \frac{\partial I_{out}}{\partial V_{in}} \right ) = \left ( \frac{\partial I_D}{\partial V_{GS}} \right )[/math]

So to calculate math>y_{fs}</math> we need to know function [math]I_D(V_{GS})[/math]. Lets approximate this function by line:

Question

Does [math]y_{fs}[/math] depend on[math] I_D[/math]? (10 pnts)

Go Back to All Lab Reports Forest_Electronic_Instrumentation_and_Measurement