Lab 14 RS

From New IAC Wiki
Jump to navigation Jump to search

Go Back to All Lab Reports


The Common Emitter Amplifier

Circuit

Construct the common emitter amplifier circuit below according to your type of emitter.

TF EIM Lab14a.png

Calculate all the R and C values to use in the circuit such that

a. Try [math]R_B \approx 220 \Omega[/math] and [math]I_C \approx 100 \mu A[/math]
b. [math]I_C \gt 0.5[/math] mA DC with no input signal
c. [math]V_{CE} \approx V_{CC}/2 \gt 2[/math] V
d. [math]V_{CC} \lt V_{CE}(max)[/math] to prevent burnout
e. [math]V_{BE} \approx 0.6 V[/math]
f. [math]I_D \approx 10 I_B \lt 1[/math] mA


Let's [math]V_{CC} = 20\ V[/math], [math]R_E = 200\ \Omega[/math] and [math]R_C = 1.8\ k\Omega[/math]. The load line equation becomes:

[math]I_C = \frac{V_{CC}}{R_E+R_C} + \frac{V_{EC}}{R_E+R_C} = \frac{20\ V}{2\ k\Omega} + \frac{V_{CE}}{2\ k\Omega} = (10 + 0.5 \cdot V_{CE})\ mA[/math]

This load line is pretty high and give me the wide range of amplification of the input signal.


Draw a load line using the [math]I_{C}[/math] -vs- [math]I_{EC}[/math] from the previous lab 13. Record the value of [math]h_{FE}[/math] or [math]\beta[/math].

Load Line 10mA.png


On the plot above I overlay me output lines from the previous lab report #13 and the load line I am going to use to construct amplifier.

My [math]\beta \approx 150[/math] based on my previous lab report #13

Set a DC operating point [math]I^{\prime}_C[/math] so it will amplify the input pulse given to you. Some of you will have sinusoidal pulses others will have positive or negative only pulses.

I will set up my operating point in the middle of the load line: [math]I_C = 5\ mA[/math], [math]V_EC = 10\ mA[/math].


Let's calculate all bias voltage to set up this operating point.

[math]V_E = I_E \cdot R_E = 5\ mA \cdot 0.2\ k\Omega = 1\ V[/math]
[math]V_{BE} = 0.6\ V[/math]
[math]V_{B} = V_E + V_B = (1.0 + 0.6)\ V = 1.6\ V[/math]

To set up the operating point above we need to set up [math]V_{B} = 1.6\ V[/math]. We can do it using voltage divider [math](R_1/R_2)[/math].

[math]I_B = \frac{I_C}{\beta} = \frac{5\ mA}{200} = 25\ uA[/math].

Here are have used [math]\beta = 200[/math] instead of [math]\beta = 150[/math] because it's my actual values here.

To get operating point independent of the transistor base current we want [math]I_{R1} \gg\ I_B[/math]

Let's [math]I_{R1} = 800\ uA \gg\ I_B = 25\ uA[/math]

So

[math]R_1 = \frac{V_B}{I_1} = \frac{1.6\ V}{800\ uA} = 2\ k\Omega[/math]


And [math]R_2[/math] we can find from Kirchhoff voltage Low

[math]V_{CC} = I_2 \cdot R_2 + V_B[/math]. Here [math]I_2 \approx I_1[/math]

So

 [math]R_2 = \frac{V_{CC}-V_B}{I_1} = \frac{(20-1.6)\ V}{800\ mA} = 23\ k\Omega[/math]

Measure all DC voltages in the circuit and compare with the predicted values.(10 pnts)

My predicted DC voltage are:

We have from operating point:

[math]V_{EC} = 10\ V[/math] 
[math]I_C \approx I_E = 5\ mA[/math]

And because we have silicon transistor:

[math]V_{BE} = 0.6\ V [/math]

Now

[math]V_E = I_E \cdot R_E = 5\ mA \cdot 200\ \Omega = 1\ V[/math]
[math]V_C = V_E + V_{EC} = (1 + 11)\ V = 12\ V[/math]
[math]V_B = V_E + V_{BE} = (1 + 0.6)\ V = 1.6\ V[/math]


My measured DC voltage are:

[math]V_{EC} = (11.25 \pm 0.01)\ V[/math]
[math]V_{BE} = (0.69 \pm 0.01)\ V [/math]
[math]V_E = (0.88 \pm 0.01)\ V[/math]
[math]V_C = (12.11 \pm 0.01)\ V[/math]
[math]V_B = (1.56 \pm 0.01)\ V[/math]

First note that my [math]V_B = (1.56 \pm 0.01)\ V[/math] is close to predicted values [math]V_B = 1.6\ V[/math].


Also note that my [math]V_{EC} = (11.25 \pm 0.01)\ V[/math] is a little higher than my initial operating point [math]V_{EC} = 10\ V[/math]. The main reason is that my actual values of [math]V_{BE} = (0.69 \pm 0.01)\ V [/math] instead of [math]V_{BE} = 0.6\ V [/math] as I was assumed initially. That will reduce my [math]V_E[/math] voltage that reduce my [math]I_C[/math] current. So I will shift to right my operating point from [math]I_C = 5\ mA[/math] to lower values and correspondingly will increase my [math]V_{EC}[/math].


By direct measurements my operating point now is [math]I_C = (4.34 \pm 0.01)\ mA[/math] and [math]V_{EC} = (11.25 \pm 0.01)\ V[/math]

Let's check do my operating point is still on my load line. I have [math]R_E = (0.20 \pm 0.01)\ k\Omega[/math], [math]R_C = (1.80 \pm 0.01)\ k\Omega[/math]. So from load line equation:

[math]I_C = \frac{V_{CC}-V_{CE}}{R_E+R_C} = \frac{((20.01\pm 0.01)-(11.25\pm 0.01))\ V}{((1.80 \pm 0.01))+ (0.20 \pm 0.01))\ k\Omega} = (4.38 \pm 0.04)\ mA[/math].

So my operating point lies in my load line within experimental error.

Measure the voltage gain [math]A_v[/math] as a function of frequency and compare to the theoretical value.(10 pnts)

Measure [math]R_{in}[/math] and [math]R_{out}[/math] at about 1 kHz and compare to the theoretical value.(10 pnts)

How do you do this? Add resistor in front of [math]C_1[/math] which you vary to determine [math]R_{in}[/math] and then do a similar thing for [math]R_{out}[/math] except the variable reistor goes from [math]C_2[/math] to ground.

Measure [math]A_v[/math] and [math]R_{in}[/math] as a function of frequency with [math]C_E[/math] removed.(10 pnts)

Questions

  1. Why does a flat load line produce a high voltage gain and a steep load line a high current gain? (10 pnts)
  2. What would be a good operating point an an [math]npn[/math] common emitter amplifier used to amplify negative pulses?(10 pnts)
  3. What will the values of [math]V_C[/math], [math]V_E[/math] , and [math]I_C[/math] be if the transistor burns out resulting in infinite resistance. Check with measurement.(10 pnts)
  4. What will the values of [math]V_C[/math], [math]V_E[/math] , and [math]I_C[/math] be if the transistor burns out resulting in near ZERO resistance (ie short). Check with measurement.(10 pnts)
  5. Predict the change in the value of [math]R_{in}[/math] if [math]I_D[/math] is increased from 10 [math]I_B[/math] to 50 [math]I_B[/math](10 pnts)
  6. Sketch the AC equivalent circuit of the common emitter amplifier.(10 pnts)




Go Back to All Lab Reports Forest_Electronic_Instrumentation_and_Measurement