Lab 13 RS

From New IAC Wiki
Jump to navigation Jump to search

Go Back to All Lab Reports


DC Bipolar Transistor Curves

Data sheet for transistors.

Media:2N3904.pdfMedia:2N3906.pdf

2N3904 PinOuts.png2N3906 PinOuts.png


Using 2N3904 is more srtaight forward in this lab.

Transistor circuit

Identify the type (n-p-n or p-n-p) of transistor you are using and fill in the following specifications.

I am going to use n-p-n transistor 2N3904. Below are some specifications from data shits for this type of transistor:

Value Description
V(BR)CEO=40 V Collector-Base breakdown voltage
V(BR)EBO=6 V Emitter-Base Breakdown Voltage
V(BR)CEO=40 V Maximum Collector-Emitter Voltage
V(BR)CBO=60 V Maximum Collector-Emitter Voltage
IC=200 mA Maximum Collector Current - Continuous
P=625 mW Transistor Power rating(PMax)
hFE min  hFE max  IC, VCE
40 300 IC=0.1 mA, VCE=1.0 V
70 300 IC=1 mA, VCE=1.0 V
100 300 IC=10 mA, VCE=1.0 V
60 300 IC=50 mA, VCE=1.0 V
30 300 IC=100 mA, VCE=1.0 V

Construct the circuit below according to the type of transistor you have.

TF EIM Lab13a Circuit.pngTF EIM Lab13 Circuit.png


Let RE=100Ω.

VCC<5Volts variable power supply

VBE=1 V.

Find the resistors you need to have

IB=2μA , 5μA , and 10μA

By measurements I was able to find that VBE=0.6 V. So I am going to use this value. Also let picks up VBB=1.6 V. So my current IB=VBBVBERB=(1.60.6) VRB=1.0 VRB.

Now to get [math]I_B = 2\ \mu A[/math] I need to use [math]R_B = \frac{1.0\ V}{2\ \mu A} = 500\ k\Omega[/math]
    To get [math]I_B = 5\ \mu A[/math] I need to use [math]R_B = \frac{1.0\ V}{5\ \mu A} = 200\ k\Omega[/math]
    To get [math]I_B = 10\ \mu A[/math] I need to use [math]R_B = \frac{1.0\ V}{10\ \mu A} = 100\ k\Omega[/math]



Measure the emitter current IE for several values of VCE by changing VCC such that the base current IB=2μ A is constant. IBVBBVBERB

VCC VB VBB VEC VE RE RB IE=VERE IB=VBBVBRB Pmax=ICVECRB
mV mV V mV mV Ω kΩ mA μA mW
41.5±0.5 600±50 1.6±0.05 0.0±1 40±2 100±0.5 494.7±0.5 0.4±0.02 2.0±0.18
106.7±0.5 600±50 1.6±0.05 4.0±1 100±5 100±0.5 494.7±0.5 0.4±0.02 2.0±0.18
142.0±0.5 600±50 1.6±0.05 10.0±1 140±5 100±0.5 494.7±0.5 1.4±0.05 2.0±0.18
170.8±0.5 600±50 1.6±0.05 16.0±1 170±5 100±0.5 494.7±0.5 1.4±0.05 2.0±0.18
204.9±0.5 600±50 1.6±0.05 22.0±1 200±5 100±0.5 494.7±0.5 1.4±0.05 2.0±0.18
233.0±0.5 600±50 1.6±0.05 26.0±1 240±10 100±0.5 494.7±0.5 1.4±0.05 2.0±0.18
266.2±0.5 600±50 1.6±0.05 28.0±1 260±10 100±0.5 494.7±0.5 1.4±0.05 2.0±0.18
296.1±0.5 600±50 1.6±0.05 29.0±1 300±10 100±0.5 494.7±0.5 1.4±0.05 2.0±0.18
338.0±0.5 600±50 1.6±0.05 29.0±1 340±10 100±0.5 494.7±0.5 1.4±0.05 2.0±0.18
406.0±2.0 600±50 1.6±0.05 29.0±1 400±10 100±0.5 494.7±0.5 1.4±0.05 2.0±0.18
554.0±2.0 600±50 1.6±0.05 29.0±1 560±20 100±0.5 494.7±0.5 1.4±0.05 2.0±0.18
809.0±2.0 600±50 1.6±0.05 30.0±1 800±20 100±0.5 494.7±0.5 1.4±0.05 2.0±0.18
1041.0±2.0 600±50 1.6±0.05 30.0±1 1000±50 100±0.5 494.7±0.5 1.4±0.05 2.0±0.18

Repeat the previous measurements for IB5 and 10μ A. Remember to keep ICVCE<Pmax so the transistor doesn't burn out

V_{CC} V_B V_{BB} V_ {EC} V_ E R_E R_B I_E I_B
mV mV V mV mV Ω kΩ mA \muA


5.) Graph IC -vs- VCE for each value of IB and VCC above. (40 pnts)

6.) Overlay points from the transistor's data sheet on the graph in part 5.).(10 pnts)

Questions

  1. Compare your measured value of hFE or β for the transistor to the spec sheet? (10 pnts)
  2. What is α for the transistor?(10 pnts)
  3. The base must always be more _________(________) than the emitter for a npn (pnp)transistor to conduct I_C.(10 pnts)
  4. For a transistor to conduct I_C the base-emitter junction must be ___________ biased.(10 pnts)
  5. For a transistor to conduct I_C the collector-base junction must be ___________ biased.(10 pnts)

Extra credit

Measure the Base-Emmiter breakdown voltage. (10 pnts)


I expect to see a graph (IBvsVBE) and a linear fit which is similar to the forward biased diode curves. Compare your result to what is reported in the data sheet.



Go Back to All Lab Reports Forest_Electronic_Instrumentation_and_Measurement