Lab 2 RS

From New IAC Wiki
Jump to navigation Jump to search

Go Back to All Lab Reports


RC Low-pass filter

1-50 kHz filter (20 pnts)

1. Design a low-pass RC filter with a break point between 1-50 kHz. The break point is the frequency at which the filter starts to attenuate the AC signal. For a Low pass filter, AC signals with a frequency above 1-50 kHz will start to be attenuated (not passed).

2. Now construct the circuit using a non-polar capacitor.

TF EIM Lab3.png

3. Use a sinusoidal variable frequency oscillator to provide an input voltage to your filter.

4. Measure the input (Vin) and output (Vout) voltages for at least 8 different frequencies(ν) which span the frequency range from 1 Hz to 1 MHz.

ν Vin Vout VoutVin
Hz Volts Volts

5. Graph the log(VoutVin) -vs- log(ν)

phase shift (10 pnts)

  1. measure the phase shift between Vin and Vout as a function of frequency ν. Hint: you could use Vin as an external trigger and measure the time until Vout reaches a max on the scope (sin(ωt+ϕ)=sin(ω[t+ϕω])=sin(ω[t+δt])).

Questions

  1. compare the theoretical and experimentally measured break frequencies. (5 pnts)
  2. Calculate and expression for VoutVin as a function of ν, R, and C. The Gain is defined as the ratio of Vout to Vin.(5 pnts)
  3. Sketch the phasor diagram for Vin,Vout, VR, and VC. Put the current I along the real voltage axis. (30 pnts)
  4. Compare the theoretical and experimental value for the phase shift θ. (5 pnts)
  5. what is the phase shift θ for a DC input and a very-high frequency input?(5 pnts)
  6. calculate and expression for the phase shift θ as a function of ν, R, C and graph θ -vs ν. (20 pnts)


Forest_Electronic_Instrumentation_and_Measurement

Go Back to All Lab Reports