Collimation geometry for different beam energies

From New IAC Wiki
Jump to navigation Jump to search

Go Back


90o exit port measurements

Exit port1.png

Critical and Kicker angles

Beam up down.png

[math]\Theta_C = \frac{m_ec^2}{E}[/math]
[math]\Theta_K = tan^{-1}\left(\frac{x_1}{286}\right)
                = tan^{-1}\left(\frac{1}{\sqrt{2}}\ \frac{\Delta_1}{286}\right)
                = tan^{-1}\left(\frac{1}{\sqrt{2}}\ tan(\Theta_C)\right)[/math]

Geometry calculation

Minimum energy condition.png


beam energy ΘC/m ΘC ΘK α AC A1C1 BD B1D1 A1D1 FA GH
25 MeV ΘC/2 1.17o 0.83o 2.03o 4.13 cm 6.78 cm 2.92 cm 4.79 cm 9.18 cm > 8.73 cm 75 cm 7.49 cm > 5.08 cm
25 MeV ΘC/3 1.17o 0.83o 1.63o 4.13 cm 6.78 cm 1.95 cm 3.20 cm 8.37 cm < 8.73 cm 111 cm 4.99 cm < 5.08 cm
25 MeV ΘC/4 1.17o 0.83o 1.43o 4.13 cm 6.78 cm 1.46 cm 2.40 cm 7.98 cm < 8.73 cm 136 cm 3.74 cm < 5.08 cm
44 MeV ΘC/2 0.67o 0.47o 1.16o 2.35 cm 3.85 cm 1.66 cm 2.72 cm 5.21 cm < 8.73 cm 75 cm 4.26 cm < 5.08 cm
44 MeV ΘC/3 0.67o 0.47o 0.93o 2.35 cm 3.85 cm 1.11 cm 1.82 cm 4.76 cm < 8.73 cm 111 cm 2.84 cm < 5.08 cm
44 MeV ΘC/4 0.67o 0.47o 0.81o 2.35 cm 3.85 cm 0.83 cm 1.36 cm 4.53 cm < 8.73 cm 136 cm 2.13 cm < 5.08 cm


25 MeV geometry

Θc/4, pipe 3"

Vacuum pipe collimator 168 1.png

Θc/2, box 3"x4" and then pipe 4"

need to adjust to converter position

Vacuum pipe collimator 335 5.png


Go Back