Go Back
Minimum accelerator energy to run experiment
The minimum energy of accelerator (MeV) is limited by fitting the collimator (r2) into the hole (R=8.73 cm)
[math]x_2 + r_2 = R[/math]
1) Assuming the collimator diameter is ΘC:
[math]\frac{1}{\sqrt{2}}\ (286+183)\ \tan\left(\frac{0.511}{E_{min}}\right) +
\frac{1}{2}\ (286+183)\ \tan\left(\frac{0.511}{E_{min}}\right) = 8.73 \Rightarrow E_{min} = 33.1\ MeV [/math]
2) Assuming the collimator diameter is ΘC/2:
[math]\frac{1}{\sqrt{2}}\ (286+183)\ \tan\left(\frac{0.511}{E_{min}}\right) +
\frac{1}{2}\ (286+183)\ \tan\left(\frac{1}{2}\ \frac{0.511}{E_{min}}\right) = 8.73 \Rightarrow E_{min} = 26.3\ MeV [/math]
3) Assuming the collimator diameter is ΘC/4:
[math]\frac{1}{\sqrt{2}}\ (286+183)\ \tan\left(\frac{0.511}{E_{min}}\right) +
\frac{1}{2}\ (286+183)\ \tan\left(\frac{1}{4}\ \frac{0.511}{E_{min}}\right) = 8.73 \Rightarrow E_{min} = 22.8\ MeV [/math]
4) In general:
25 MeV geometry
geometry calculation
| collimator diameter
|
Θcritical
|
Θkicker
|
αcollimator
|
AC
|
A1C1
|
BD
|
B1D1
|
FA
|
F1F
|
| Θcritical2 |
1.17o |
0.83o |
2.03o
|
4.13 cm |
6.78 cm |
2.92 cm |
4.79 cm |
75 cm |
143 cm
|
| Θcritical4 |
1.17o |
0.83o |
1.43o
|
4.13 cm |
6.78 cm |
1.46 cm |
2.40 cm |
136 cm |
203 cm
|
geometry pictures
how it looks 1 (Θc/2, box 3"x4" and then pipe 4")
File:Vacuum pipe collimator .png
how it looks 2 (Θc/4, box 3"x4" and then pipe 4")
File:Vacuum pipe collimator .png
Go Back