Counts Rate (44 MeV LINAC)

From New IAC Wiki
Jump to navigation Jump to search

Go Back

Counts Rate for U238 (12.5 µm Ti converter)

LINAC parameters used in calculations

1) pulse width 50 ps
2) pulse current 50 A
3) repetition rate 300 Hz
4) energy 44 MeV

Number of electrons/sec on radiator

[math] 50\ \frac{Coulomb}{sec} \times \frac{1\cdot e^-}{1.6\cdot 10^{-19}C} \times 50ps \times 300Hz = 0.47 \cdot 10^{13} \frac{e^-}{sec}[/math]


Number of photons/sec on target

bremsstrahlung

Bremss44MeV.png

in (10,20) MeV region we have about

    0.1 photons/electrons/MeV/r.l

radiation length

r.l.(Ti) = 3.59 cm
  
radiator thickness = 12.5 [math]\mu m[/math]
[math]\frac{12.5\ \mu m}{3.59\ cm} = 3.48 \cdot 10^{-4} \ r.l.[/math]

steps together...

[math]0.1\ \frac{\gamma 's}{(e^- \cdot MeV \cdot r.l.)} \times 3.48 \cdot 10^{-4} r.l. \times 10\ MeV \times 0.47 \cdot 10^{13} \frac{e^-}{sec}=1.64 \cdot 10^{9} \frac{\gamma}{sec}[/math]

Alex factor (GEANT4 calculation)

Collimation factor is

    6.85 % of total # of photons

then, incident flux on target is

[math]1.64 \cdot 10^{9} \frac{\gamma}{sec} \cdot 6.85\ % = 11.2 \cdot 10^{7} \frac{\gamma}{sec}[/math]

Number of neutrons/sec

photonuclear cross section for [math]^{238}U(\gamma , n)[/math] reaction

J. T. Caldwell et all., Phys. Rev. C21, 1215 (1980):

Phofission sigma U238.png

in (10,20) MeV region the average cross section, say, is:

    130 mb

target thickness, [math]^{238}U[/math]

[math]\frac{19.1\ g/cm^3}{238.02\ g/mol} = 0.08\ \frac{mol}{cm^3} \times \frac{6.02\cdot 10^{23}\ atoms}{mol} = 0.48\cdot 10^{23}\ \frac{atoms}{cm^3}[/math]

Let's target thickness = 1 mm:

[math]0.48\cdot 10^{23}\ \frac{atoms}{cm^3} \times 0.1\ cm = 0.48\cdot 10^{22}\ \frac{atoms}{cm^2}[/math]

neutrons per fission

   2.4 neutrons/fission

steps together...yeild

[math] Y = \frac{\gamma}{sec} \times t \times \sigma \times 2.4 = [/math]
[math] = 11.2 \cdot 10^{7} \frac{\gamma}{sec} \times 130\ mb \times 0.48\cdot 10^{22}\ \frac{atoms}{cm^2} \times 2.4 = 1.68 \cdot 10^{5}\   \frac{neutrons}{sec}[/math]

Worst Case Isotropic Neutrons

checking detector distance

we want:

     the time of flight of neutron >> the pulse width

take the worst case 10 MeV neutron:

[math] E_{tot} = E_{kin} + E_{rest} =  10\ MeV + 938\ MeV = 948\ MeV [/math]
[math] \gamma = \frac{E_{tot}}{m_p} = \frac{948\ MeV}{938\ MeV} = 1.0107 [/math]
[math] \gamma^2 = \frac{1}{1 - \beta^2} \ \ \  \rightarrow \ \ \ \beta = 0.145\ c[/math]

take the neutron detector 1 meter away:

[math] t = \frac{1\ m}{0.145\ c} = \frac{1\ m}{0.145\cdot 3\cdot 10^8\ m/sec} = 23\ ns [/math]
     23 ns >> 50 ps  <= time resolution is good

geometrical factor

taking real detector 3" x 2" => S is about 40 cm^2

1 meter away
fractional solid angle = [math]\frac{40\ cm^{2}}{4 \pi\ (100\ cm)^{2}} = 3.2 \cdot 10^{-4}[/math] <= geometrical acceptance

Yield

the yield per second:

[math]1.68 \cdot 10^{5}\ \frac{neutrons}{sec} \times 3.2 \cdot 10^{-4} = 53.8\ \frac{neutrons}{sec} [/math]

the yield per pulse:

[math] 53.8\ \frac{neutrons}{sec} \times \frac{1\ sec}{300\ pulses} = 0.18\ \frac{neutrons}{pulse} [/math] 

 53.8 neutrons/sec  <= this experiment is do able
 0.18 neutrons/pulse <= good for stopping pulse

Counts Rate for U238 (25 µm Al converter)

radiation length

r.l.(Al) = 8.89 cm
  
radiator thickness = 25 [math]\mu m[/math]
[math]\frac{25\ \mu m}{8.89\ cm} = 2.81 \cdot 10^{-4} \ r.l.[/math]

Calibration factor

The only difference from calculations above is:

1) radiation length:

    3.48 (for 12.5 µm Ti) / 2.81 (for 50 µm Al) = 1.24

Yield

 53.8 neutrons/sec * 1.24 = 66.7 neutrons/sec
 0.18 neutrons/pulse * 1.24 = 0.22 neutrons/pulse

Counts Rate for Deuteron (12.5 µm Ti converter)

photonuclear cross section for [math] ^2H(\gamma , n) [/math] reaction

A. De Graeva et all., Phys. Rev. C45, 860 (1992):

Photonuc sigma deuteron.png

in (10,20) MeV region the average cross section, say, is:

    1000 μb

target thickness, [math] D_2O [/math]

take [math]D_2O[/math], liquid (20°C):

[math] \frac{1.1056\ g/mL}{20.04\ g/mol} = 0.055\ \frac{mol}{cm^3} \times \frac{6.02\cdot 10^{23}\ molecules}{mol} = 0.33\cdot 10^{23}\ \frac{molecules}{cm^3} [/math]
[math] 0.33\cdot 10^{23}\ \frac{molecules}{cm^3} \times \frac{2\ deuterons}{molecule} = 0.66\cdot 10^{23}\ \frac{deuterons}{cm^3} [/math]

Let's target thickness = 10 cm:

[math]0.66\cdot 10^{23}\ \frac{atoms}{cm^3} \times 10\ cm = 66\cdot 10^{22}\ \frac{atoms}{cm^2}[/math]


angular distribution of neutron

1) from relativistic kinematic:


[math]T_{\gamma}[/math] [math]\Theta_{LAB}[/math] [math]\Theta_{CM}[/math]
20 MeV [math]90^o[/math] [math]94.38^o[/math]
40 MeV [math]90^o[/math] [math]96.06^o[/math]

Calibration factor

The only difference from calculations above is:

1) cross section:

    1000 μb (D) / 130 mb (238U) = 1/130

2) target thickness:

   [math] \frac{66\cdot 10^{22}\ atoms/cm^2\ (D)}{0.48\cdot 10^{23}\ atoms/cm^2\ (^{238}U)} = 66/0.48 [/math]

3) neutrons per reaction:

   1 neutron (D) / 2.4 neutrons(238U) = 1/2.4

4) geometrical factor:

   assume for now is 1

total calibration factor is:

  [math]\frac{1}{130} \times \frac{66}{0.48} \times \frac{1}{2.4} \times 1= 0.441[/math]

Yield

saying all other factors is the same =>

the yield per second :

[math] 53.8\ \frac{neutrons}{sec} \times 0.441 = 23.7\ \frac{neutrons}{sec} [/math]

the yield per pulse:

[math] 23.7\ \frac{neutrons}{sec} \times \frac{1\ sec}{300\ pulses} = 0.079\ \frac{neutrons}{pulse} [/math]


Go Back