Geometry (44 MeV LINAC exit port)

From New IAC Wiki
Jump to navigation Jump to search

Go Back

Some measurements of 90 experimental degree exit port

Exit port1.png


Critical angle and displacement calculations

Θ=mec2Ebeam=0.511 MeV44 MeV=0.67 o


Kicker angle and displacement calculations

1 foot = 30.48 cm

accelerator's side wall

  [math]\Delta = 286\ cm\ *\ \tan(0.67^o) = 3.34\ cm[/math] 
  [math]x^2+x^2 = 3.34^2\ cm \ \ \Rightarrow\ \  x = 2.36\ cm[/math]
  [math]\Delta = 2.36\ cm \ \ \Rightarrow\ \ \tan^{-1}\left(\frac{2.36}{286}\right) = 0.47\ ^o[/math]

detector's side wall

  [math]\Delta = (286\ cm + 183\ cm)\ *\ \tan(0.67^o) = 5.48\ cm[/math]
  [math]\Delta = (286\ cm + 183\ cm)\ *\ \tan(0.47^o) = 3.85\ cm[/math]

Off-axis collimation geometry

Beam up down5.png


Vacuum pipe

collimator location

1) center position

  [math]286\ cm \cdot \tan (0.47) = 2.35\ cm[/math]  (wall 1)
[math](286 + 183)\ cm \cdot \tan (0.47) = 3.85\ cm[/math] (wall 2)

2) assume diameter is Θc/2=0.67o/2=0.335o

  [math]286\ cm \cdot \tan (0.335) = 1.67\ cm[/math]  (wall 1)
[math](286 + 183)\ cm \cdot \tan (0.335) = 2.74\ cm[/math] (wall 2)

collimator critical angle

  AB = AC - BD/2 = (2.35 - 1.67/2) cm = 1.52 cm
A1D1 = A1C1 + B1D1/2 = (3.85 + 2.74/2) cm = 5.22 cm
ED1 = A1D1 - AB = (5.22 - 1.52) cm = 3.70 cm

from triangle BEB1:

  [math] \tan (\alpha) = \frac{3.70\ cm}{183\ cm} \Rightarrow \alpha = 1.16^o[/math]

minimal distance from the wall

Go Back