Go Back
Some measurements of 90 experimental degree exit port
Critical angle and displacement calculations
[math]\Theta = \frac{m_ec^2}{E_{beam}} = \frac{0.511\ MeV}{44\ MeV} = 0.67\ ^o[/math]
Kicker angle and displacement calculations
accelerator's side wall
[math]\Delta = 286\ cm\ *\ \tan(0.67^o) = 3.34\ cm[/math]
[math]x^2+x^2 = 3.34^2\ cm \ \ \Rightarrow\ \ x = 2.36\ cm[/math]
[math]\Delta = 2.36\ cm \ \ \Rightarrow\ \ \tan^{-1}\left(\frac{2.36}{286}\right) = 0.47\ ^o[/math]
detector's side wall
[math]\Delta = (286\ cm + 183\ cm)\ *\ \tan(0.67^o) = 5.48\ cm[/math]
[math]\Delta = (286\ cm + 183\ cm)\ *\ \tan(0.47^o) = 3.85\ cm[/math]
Off-axis collimation geometry
Vacuum pipe
collimator location
1) center position
[math]286\ cm \cdot \tan (0.47) = 2.35\ cm[/math] (wall 1)
[math](286 + 183)\ cm \cdot \tan (0.47) = 3.85\ cm[/math] (wall 2)
2) assume diameter is [math]\Theta_c/2 = 0.67^o/2 = 0.335^o[/math]
[math]286\ cm \cdot \tan (0.335) = 1.67\ cm[/math] (wall 1)
[math](286 + 183)\ cm \cdot \tan (0.335) = 2.74\ cm[/math] (wall 2)
Collimator critical angle
AB = AC - BD/2 = (2.35 - 1.67/2) cm = 1.52 cm
A1D1 = A1C1 + B1D1/2 = (3.85 + 2.74/2) cm = 5.22 cm
ED1 = A1D1 - AB = (5.22 - 1.52) cm = 3.70 cm
from triangle [math]BEB_1[/math]:
[math] \tan (\alpha) = \frac{3.70\ cm}{183\ cm} \Rightarrow \alpha = 1.16^o[/math]
minimal distance from the wall
Go Back