TF ErrAna Homework
Errors
Give examples of 5 a Systematic error.
Find 3 published examples of data which is wrongly represented.
Identify what is incorrect about it. What does it mean to be wrongly presented? A typical example is a political poll which does not identify the statistical uncertainty properly or at all.
Create a Histogram using ROOT
some commands that may interest you
root [1] TH1F *Hist1=new TH1F("Hist1","Hist1",50,-0.5,49.5); root [2] Hist1->Fill(10); root [3] Hist1->Draw();
You can use the above commands but you need to change the names and numbers above to receive credit. You must also add a title to the histogram which contains your full name. You will printout the histogram and hand it in with the above two problems.
- Notice how the square rectangle in the histogram is centered at 10!
- Notice that if you do the commands
root [2] Hist1->Fill(10); root [3] Hist1->Draw();
the rectangle centered a 10 will reach the value of 2 on the vertical axis.
Two dice are rolled 20 times. Create a histogram to represent the 20 trials below
Trial | Value |
1 | 8 |
2 | 10 |
3 | 9 |
4 | 5 |
5 | 9 |
6 | 6 |
7 | 5 |
8 | 6 |
9 | 3 |
10 | 9 |
11 | 8 |
12 | 5 |
13 | 8 |
14 | 10 |
15 | 8 |
16 | 11 |
17 | 12 |
18 | 6 |
19 | 7 |
20 | 8 |
Mean and SD
Electron radius
The probability that an electron is a distance
from the center of the hydrogen atomDoing the integrals by hand (no tables) ,
a.)Find the value of C
b.) Find the mean electron radius and standard deviation for an electron in a hydrogen atom
Histograms by Hand
Given the following test scores from 40 students.
Trial | Value | Trial | Value | Trial | Value | Trial | Value |
1 | 49 | 11 | 90 | 21 | 69 | 31 | 74 |
2 | 80 | 12 | 84 | 22 | 69 | 32 | 86 |
3 | 84 | 13 | 59 | 23 | 53 | 33 | 78 |
4 | 73 | 14 | 56 | 24 | 55 | 34 | 55 |
5 | 89 | 15 | 62 | 25 | 77 | 35 | 66 |
6 | 78 | 16 | 53 | 26 | 82 | 36 | 60 |
7 | 78 | 17 | 83 | 27 | 81 | 37 | 68 |
8 | 92 | 18 | 81 | 28 | 76 | 38 | 92 |
9 | 56 | 19 | 65 | 29 | 79 | 39 | 87 |
10 | 85 | 20 | 81 | 30 | 83 | 40 | 86 |
a.) calculate the mean and standard deviation
b.) construct a histogram by hand which has 10 bins centered on 10,20,...
c.) Use ROOT to construct a histogram. Compare the mean and RMS from ROOT with your result in part (a) above. What is the difference between the RMS report in the ROOT histogram and the standard deviation you calculated in part (a)?
Variance using Probability function
Given that
Justify that
- Note
- The standard deviation ( ) is the root mean square (RMS) of the deviations.
RMS =
soBinomial Probability Distributions
1.)Evaluate the following (at least one by hand)
a.)
b.)
c.)
d.)
2.) Plot the binomial distribution P(x) for n=6 and p=1/2 from x=0 to 6.
3.) Given the probability distribution below for the sum of the point on a pair of dice
a.) find the mean
b.) find the standard deviation
4.) Prove that for the Binomial distribution.
Poisson Prob Dist
Variance
Show that
for the Poisson Distribution starting with the definition of variance.Binomial/Poisson Statistic
The probability that a student will fail this course is 7.3%.
a.) What is the expected number of student that will fail this course if there are 32 enrolled?
b.) What is the probability that 5 or more will fail in one semester.
Deadtime
In a counting experiment it is possible for a detector to be "too busy" recording the effects of a detected particle that it is unable to measure another particle traversing the detector during short time interval. "Dead time" is a measure of the time interval over which your detector is unable to make a measurement because it is currently making a measurement.
Assume that particle hit your detector at a rate of
particles/sec and that your detector has a deadtime of 200 ns . The mean number of particles hitting the detector during this deadtime is . The detector efficiency is defined asa.) Find the efficiency of the detector assuming the process follows the Poisson distribution.
b.) Graph the efficiency as a function of the incident particle flux for rates between 0 and
particles/sec.Gaussian Prob Dist
Counting experiment variance
a.)What is the standard deviation for a counting experiment with a mean
= 100.b.)What is the standard deviation if the mean number of counts is increased by a factor of 4?
Half Width -vs- variance
Show that the full-width at half maximum
is related to the standard devision by for the Gaussian probability distribution. Begin with the definition thatGaussian Probability
a.) What is the probability of observing a value beyond 1 standard deviation from the mean of a Gaussian distribution? ie:
=?b.) Find the value of
such that .c.) repeat parts a.) and b.) above for
and
Error Propagation
Lorentzian
a.)What fraction of the area of a Lorentzian curve is enclosed within the interval
?b.) The probability of observing a value from the Lorentzian distribution that is more than 2 half-widths (
) from the mean.Derivatives
Find the uncertainty
in as a function of the uncertainties and in and for the following functions:a.)
b.)
c.)
d.)
Snell's Law
Given Snell's Law
Assume
is known with absolute certainty and find and it's uncertainty when the following angles are measured
Linear Fit
2 Eq. 2 unknowns
Determine
& for the system below3 Eq. 3 unknowns
Given the system of 3 Equations and 3 Unkowns:
or in matrix form
a.)Express a the solution for X,Y, and Z in matrix form assuming the remaining terms in the above are known ( and are known)
c.) Find expressions for x,y, and z in terms of A,B,C when
Linear Data Fit
A metal rod is placed with its ends in two different temperature baths. One bath is at zero degree Celsius and the other at 100. The temperature along the rod is measure and given in the table below.
Trial | Posiiton (cm) | Temperature (Celsius) |
1 | 1.0 | 15.6 |
2 | 2.0 | 17.5 |
3 | 3.0 | 36.6 |
4 | 4.0 | 43.8 |
5 | 5.0 | 58.2 |
6 | 6.0 | 61.6 |
7 | 7.0 | 64.2 |
8 | 8.0 | 70.4 |
9 | 9.0 | 98.8 |
a.) Fit the above data assuming a linear function T = A + b X
assuming all of the data has the same uncertainty. Report the value of A & B and the uncertainty in the parameters.
b.) repeat part a.) above except this time assume each data point has an uncertainty given by the Poisson distribution as:
.