[math]Probability = \sigma \times \rho \times thickness[/math]
[math]\rho(D _20) = 1 \frac{g}{cm^{3}} \times \frac {20}{18} \times \frac{6.022 \cdot 10^{23}}{20g}\times 2 = 6.6242 \cdot 10^{22}[/math]
[math]6 MeV = 2200 \cdot 10^{-30} \times 6.6242 \cdot 10^{22} \times 5 cm = 7.36 \cdot 10^{-4}[/math]
[math]8 MeV = 1776 \cdot 10^{-30} \times 6.6242 \cdot 10^{22} \times 5 cm =5.94 \cdot 10^{-4}[/math]
[math]10 MeV = 1409 \cdot 10^{-30} \times 6.6242 \cdot 10^{22} \times 5 cm =4.71 \cdot 10^{-4}[/math]
[math]12 MeV = 1161 \cdot 10^{-30} \times 6.6242 \cdot 10^{22} \times 5 cm =3.88 \cdot 10^{-4}[/math]
[math]13 MeV = 1058 \cdot 10^{-30} \times 6.6242 \cdot 10^{22} \times 5 cm =3.55 \cdot 10^{-4}[/math]
[math]14 MeV = 963 \cdot 10^{-30} \times 6.6242 \cdot 10^{22} \times 5 cm =3.22 \cdot 10^{-4}[/math]