Eγ vs probability with 8 cm of D20

From New IAC Wiki
Revision as of 11:42, 5 June 2008 by Oborn (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

[math]Probability = \sigma \times \rho \times thickness[/math]

[math]\rho of D _2 0 = 1 \frac{g}{cm^{3}} \times \frac {20}{18} \times \frac{6.022 \cdot 10^{23}}{20g}\times 2 = 6.6242 \cdot 10^{22}[/math]


[math]6 MeV = 2200 \cdot 10^{-30} \times 6.6242 \cdot 10^{22} \times 8 cm = 2.36 \cdot 10^{-2}[/math]


[math]8 MeV = 1776 \cdot 10^{-30} \times 6.6242 \cdot 10^{22} \times 8 cm =1.90 \cdot 10^{-2}[/math]


[math]10 MeV = 1409 \cdot 10^{-30} \times 6.6242 \cdot 10^{22} \times 8 cm =1.51 \cdot 10^{-2}[/math]


[math]12 MeV = 1161 \cdot 10^{-30} \times 6.6242 \cdot 10^{22} \times 8 cm =1.24 \cdot 10^{-2}[/math]


[math]13 MeV = 1058 \cdot 10^{-30} \times 6.6242 \cdot 10^{22} \times 8 cm =1.13 \cdot 10^{-2}[/math]


[math]14 MeV = 963 \cdot 10^{-30} \times 6.6242 \cdot 10^{22} \times 8 cm =1.03 \cdot 10^{-2}[/math]

Probability d20 8 cm.jpg