C program for neutron efficiency
/************************************************************************** * Author: Rebecca Bodily * Date: 05/02/2008 * Organization: Idaho State University *************************************************************************/ #include <iostream> #include <cmath> using namespace std; double crossSectionHydrogenFunction(); double numberCarbonFunction(double thickness, const double CUBICCENTIMETERCARBON); double numberHydrogenFunction(double thickness, const double CUBICCENTIMETERHYDROGEN); double crossSectionCarbonFunction(); void efficiencyFunction(double numberHydrogen, double numberCarbon, double crossSectionHydrogen, double crossSectionCarbon, double thickness); /************************************************************************* * This program is to find the * efficiency of a neutron detector. ************************************************************************/ double main() { double neutronEnergy; double numberHydrogen; double numberCarbon; double crossSectionHydrogen; double crossSectionCarbon; double thickness; const double CUBICCENTIMETERCARBON = 5.23e22; const double CUBICCENTIMETERHYDROGEN = 4.74e22; cout << endl; cout << "Enter thickness of detector (in centimeters): "; cin >> thickness; crossSectionHydrogen = crossSectionHydrogenFunction(); numberCarbon = numberCarbonFunction(thickness, CUBICCENTIMETERCARBON); numberHydrogen = numberHydrogenFunction(thickness, CUBICCENTIMETERHYDROGEN); crossSectionCarbon = crossSectionCarbonFunction(); efficiencyFunction(numberHydrogen, numberCarbon, crossSectionHydrogen, crossSectionCarbon, thickness); } /********************************************************************** * Equation for cross section of hydrogen according to * equation 15-9 from Radiation Detection and Measurement * by Glenn Knoll *********************************************************************/ double crossSectionHydrogenFunction() { double neutronEnergy; double crossSectionHydrogen; cout << endl; cout << "Enter neutron energy (in MeV): "; cin >> neutronEnergy; crossSectionHydrogen = ((4.83 / sqrt(neutronEnergy)) - .578e-24); return crossSectionHydrogen; } /********************************************************************** * Equation for calculating the number of Carbons in * the problem per cubic centimeter, dependent on what * the user put in for the thickness of the detector. *********************************************************************/ double numberCarbonFunction(double thickness, const double CUBICCENTIMETERCARBON) { double numberCarbon; numberCarbon = thickness * CUBICCENTIMETERCARBON; return numberCarbon; } /********************************************************************* * Equation for calculating the number of Hydrogens in * the problem per cubic centimeter, dependent on what * the user put in for the thickness of the detector. ********************************************************************/ double numberHydrogenFunction(double thickness, const double CUBICCENTIMETERHYDROGEN) { double numberHydrogen; numberHydrogen = thickness * CUBICCENTIMETERHYDROGEN; return numberHydrogen; } /********************************************************************* * Requesting the cross section from the Knoll book, and * then calculating it from barns to centimeters. ********************************************************************/ double crossSectionCarbonFunction() { double crossSectionCarbon; cout << endl; cout << "Enter the cross section of Carbon by " << "looking in Radiation" << endl << "Detection and Measurement by Glenn Knoll, on" << " page 535, " << endl << "Figure 15-15b (in square centimeters): "; cin >> crossSectionCarbon; return crossSectionCarbon; } /******************************************************************** * Equation for efficiency according to equation 15-8b * from Radiation Detection and Measurement * by Glenn Knoll ******************************************************************/ void efficiencyFunction(double numberHydrogen, double numberCarbon, double crossSectionHydrogen, double crossSectionCarbon, double thickness) { double efficiency; double nHcH = numberHydrogen * crossSectionHydrogen; double nCcC = numberCarbon * crossSectionCarbon; efficiency = (((nHcH) / (nHcH + nCcC)) * (1-exp(-(nHcH + nCcC)) * thickness) * 100); cout.precision(4); cout << endl; cout << "Therefore, the efficiency of our " << "system is: " << efficiency << "%" << endl; cout << endl; return; }