NucPhys I HomeworkProblems

From New IAC Wiki
Revision as of 17:02, 10 March 2008 by Oborn (talk | contribs) (→‎Set 5)
Jump to navigation Jump to search

Chapter 2

Set 1

1.) In your own words, describe what the "Standard Model" of physics is using 2 to 5 paragraphs. Your paragraphs should include the concepts of the 4 fundamental forces of physics, QED, and QCD at a minimum. Any sentences in which a string of 5 or more words match a sentence that is found on the internet will be evidence of cheating.


2.) Solve the Schrodinger equation for the following potential:

[math]V(x) = \infty \;\; x\lt 0[/math]
[math]V(x) =\left \{ {-V_0 \;\;\;\; 0\lt x \lt a \atop 0 \;\;\;\; x\gt a} \right .[/math]

[math]V_0 \gt 0[/math]. Assume particles are incident from [math]x = -\infty[/math], don't try to normalize but do express the wave function in terms of one coefficient.

Set 2

1.) Given the following barrier potential

[math]V(x) = 0 \;\; x\lt 0[/math]
[math]V(x) =\left \{ {V_o \;\;\;\; 0\lt x \lt a \atop 0 \;\;\;\; x\gt a} \right .[/math]

show that the transmission coefficient is

[math]T = \frac{1}{1+ \frac{V_o^2 \sinh^2(k_2a)}{4E(V_o-E)}}[/math]

when [math]E \lt V_o[/math]

Assume particles are incident from [math]x = -\infty[/math] and [math]k_2^2 = 2m(V_o-E)/\hbar^2[/math].

Set 3

1.) Starting with Shrodinger's time-independent equation, derive the wave functions for a 2-D simple harmonic oscillator. Your derivation should take advantage of separation of variables and you are not required to normalize the wave function.

Set 4

1.) Show that the mean-square charge radius of a uniformly charged sphere is [math]\lt r^2\gt = 3R^2/5[/math]

2.) Using the definition of the form factor [math]F(q^2)[/math] and probably an integral table, calculate [math]F(q^2)[/math] when

a.):[math]\rho(r) =\left \{ {\rho_0 \;\;\;\; r\lt R \atop 0 \;\;\;\; r\gt R} \right .[/math]


b.) [math]\rho(r) = \rho_0 e^{- \alpha r}[/math]

c.) [math]\rho(r) = \rho_0 e^{- \alpha^2 r^2}[/math]

Set 5

1.) a.) find the binding energy difference between O-15 and N-15

b.) compute the nuclear radius of O-15 and N-15 assuming the above binding energy is due to the coulomb energy.


2.) Muonic X-rays

a.) Calculate the energies of muonic K-line X-rays from Fe assuming a point nucleus and using a one-electron model..

b.) Calculate the energy correction [math](\Delta E)[/math] due to the finite nuclear size.

3.) Find the binding energy using the semi-empirical mass formula for

a.) Ne-21

b.) Fe-57

c.) Bi-209

d.) Fm-256

4.) Find the nuetron separation energies for

a.) Li-7

b.) Zr-91

c.) U-236

5.) Find the proton separation energies for

a.) Ne-20

b.) Mn-55

c.) Au-197

Set 6

1.) Assume a neutron may be described as a proton with a negative pion [math](\pi^-)[/math] in an [math]\ell =0[/math] orbital state.

What would be the orbital magnetic dipole moment of this system [math](s_{\pi} = 0)[/math]?

2.) Assume that the proton magnetic moment is due to the rotational motion of a positive spherical uniform charge distribution of radius[math] R[/math] spinning about its axis with angular speed [math]\omega[/math].

a.) Integrate the charge distribution to show that

[math]\mu = \frac{1}{5} e \omega R^2[/math]

b.) show that

\mu = \frac{e s}{2 m}

using the classical relationship between angular momentum and rotational speed for the spin.

Set 500

5.) Several nuclei decay by the emmission of an alpha particle. An alpha particle (He-4) is a tighlty bound nuclear containing 2 protons and 2 neutrons in which the energy needed to remove one neutron is 20.5 MeV. One model for this decay process views the alpha particle as being bound to the nucleus via a spherical potential well.

[math]V_{bound} =\left \{ {-V_o \;\;\;\; r \lt r_o \atop \frac{A}{r} \;\;\;\; r\gt r_o} \right .[/math]

Once outside the nucleus, the alpha particle is repelled via Coulombs law

[math]V_{outside} \approx \frac{2(Z-2)e^2}{r} \equiv \frac{A}{r}[/math]

The original nucleus had a charge [math]Ze[/math] and the alpha particle has a charge [math]2e[/math].

Use the WKB approximation to show that the transmissivity (T : transmission coefficient) is:

[math]T = e^{-\frac{2}{\hbar} \int_{r_o}^{r_1} \sqrt{2m \left ( \frac{A}{r} - E\right )}dr} = e^{-\frac{2A}{\hbar v} (2W-\sin(2W) )}[/math] Gamow's formula Media:GamowFormula.pdf

where

[math](v=\sqrt{2E/m})[/math] and [math]\sqrt{r_o/r}\equiv cos W[/math] and [math]r_1 = \frac{A}{E}[/math].


Go Back