Limit of Scattering Angle Theta in Lab Frame

From New IAC Wiki
Jump to navigation Jump to search

The quantity is known as the

u(P1P2)2=(P2P1)2


In the CM Frame

P1=P2


P1=P2


E1=E1=E2=E2


|p1|=|p1|=|p2|=|p2|


u=(P1P2)2=(P2P1)2


u=P21+P222P1P2=P22+P212P2P1


u=2m22E1E2+2p1p2=2m22E2E1+2p2p1


u=2m22E21+2|p21|cosθ1 2=2m22E22+2|p22|cosθ2 1


where θ1 2 and θ2 1is the angle between the before and after momentum in the CM frame

Using the relativistic relation E2=m2+p2 this reduces to


u=2p21+2|p21|cosθ1 2=2p22+2|p22|cosθ2 1


u=2p21(1cosθ1 2)=2p22(1cosθ2 1)


For θ11=90, by symmetry this implies θ12=270


u=2p21


This can be rewritten again using the relativistic energy relation E2=m2+p2


u=2(m2E21)=2(m2E22)

In the Lab Frame

u=P21+P222P1P2=P22+P212P2P1


u=2m22E1E2+2p1p2=2m22E2E1+2p2p1

with p2=0

and E2=m

u=2m22E1E2+2p1p2=2m22mE1


u=2m22E1E2+2|p1||p2|cosθ1 2=2m22mE1

Maximum Moller Scattering Angle Theta in Lab Frame

Since u is invariant between frames


u=2m22E1E2+2|p1||p2|cosθ1 2=2(m2E22)


withE253 MeV for E1=11000 MeV


As found earlier, the Moller electron has a maximum energy possible of:

E2=5500 MeV


Using the relativistic energy relation, E2=m2+p2

p=E2m2pE for Em



Rewriting the expression relating the terms



Solving for the angle theta