Theu quantity is known as the
[math]u \equiv \left({\mathbf P_1^*}- {\mathbf P_2^{'*}}\right)^2=\left({\mathbf P_2^{*}}- {\mathbf P_1^{'*}}\right)^2[/math]
In the CM Frame
In the Lab Frame
[math]u={\mathbf P_1^{2}}+ {\mathbf P_2^{'2}}-2 {\mathbf P_1} {\mathbf P_2^{'}}={\mathbf P_2^{2}}+ {\mathbf P_1^{'2}}-2 {\mathbf P_2} {\mathbf P_1^{'}}[/math]
[math]u=2m^2-2E_1E_2^{'}+2 \vec p_1 \vec p_2^{'}=2m^2-2E_2E_1^{'}+2 p_2 p_1^{'}[/math]
with [math]p_2=0[/math]
and [math]E_2=m[/math]
[math]u=2m^2-2E_1E_2^{'}+2 \vec p_1 \vec p_2^{'}=2m^2-2mE_1^{'}[/math]