dσdΩ=164π2spfinalpinitial|M|2
M=e2(u−st+t−su)
M2=e4(u−st+t−su)(u−st+t−su)
M2=e4((u−s)2t2+(t−s)2u2+2(u−s)t(t−s)u)
M2=e4((u2−2us+s2)t2+(t2−2ts+s2)u2+2(ut−st+s2−us)tu)
M2=e4((t2+s2)u2−2s2tu+(u2+s2)t2)
Using the fine structure constant
α≡e24π
dσdΩ=α22s((t2+s2)u2−2s2tu+(u2+s2)t2)
In the center of mass frame the Mandelstam variables are given by:
s≡4E∗2
Using the relationship
cosθ=−1+cosθ2
t≡−2E∗2(1−cosθ)=−2E∗2(1−2cos2θ2+1)=−4E∗2(1−2cos2θ2)=−4E∗2sin2θ2
u≡−2E∗2(1+cosθ)=−2E∗2(1+2cos2θ2−1)=−4E∗2cos2θ2
\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}} \frac{(16E^{*4}\sin^4{\frac{\theta}{2}}+16E^{*4}}{16E^{*4}\cos^4{\frac{\theta}{2}}}-\frac{324E^{*4}}{4E^{*2}\sin^2{\frac{\theta}{2}}4E^{*2}\cos^2{\frac{\theta}{2}}}+\frac{16E^{*4}\cos^4{\frac{\theta}{2}}+16E^{*4}}{16E^{*4}\sin^4{\frac{\theta}{2}}}\right )