Differential Cross-Section

From New IAC Wiki
Revision as of 02:31, 26 June 2017 by Vanwdani (talk | contribs)
Jump to navigation Jump to search
dσdΩ=164π2spfinalpinitial|M|2


M=e2(ust+tsu)


M2=e4(ust+tsu)(ust+tsu)


M2=e4((us)2t2+(ts)2u2+2(us)t(ts)u)


M2=e4((u22us+s2)t2+(t22ts+s2)u2+2(utst+s2us)tu)


M2=e4((t2+s2)u22s2tu+(u2+s2)t2)


Using the fine structure constant

αe24π


dσdΩ=α22s((t2+s2)u22s2tu+(u2+s2)t2)


In the center of mass frame the Mandelstam variables are given by:

s4E2


Using the relationship

cosθ=1+cosθ2


t2E2(1cosθ)=2E2(12cos2θ2+1)=4E2(12cos2θ2)=4E2sin2θ2


u2E2(1+cosθ)=2E2(1+2cos2θ21)=4E2cos2θ2


\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}} \frac{(16E^{*4}\sin^4{\frac{\theta}{2}}+16E^{*4}}{16E^{*4}\cos^4{\frac{\theta}{2}}}-\frac{324E^{*4}}{4E^{*2}\sin^2{\frac{\theta}{2}}4E^{*2}\cos^2{\frac{\theta}{2}}}+\frac{16E^{*4}\cos^4{\frac{\theta}{2}}+16E^{*4}}{16E^{*4}\sin^4{\frac{\theta}{2}}}\right )