Differential Cross-Section

From New IAC Wiki
Revision as of 02:17, 26 June 2017 by Vanwdani (talk | contribs)
Jump to navigation Jump to search
dσdΩ=164π2spfinalpinitial|M|2


M=e2(ust+tsu)


M2=e4(ust+tsu)(ust+tsu)


M2=e4((us)2t2+(ts)2u2+2(us)t(ts)u)


M2=e4((u22us+s2)t2+(t22ts+s2)u2+2(utst+s2us)tu)


M2=e4((t2+s2)u22s2tu+(u2+s2)t2)


Using the fine structure constant

αe24π


dσdΩ=α22s((t2+s2)u22s2tu+(u2+s2)t2)


In the center of mass frame the Mandelstam variables are given by:

s4E2


t2E2(1cosθ)=2E2(12cos2θ2+1)=4E2(12cos2θ2)=4E2sin2θ2


u2E2(1+cosθ)


dσdΩ=α28E2((4E4(1cosθ)2+16E4)4E4(1+cosθ)232E24E4(1+cosθ)(1cosθ)+(4E4(1+cosθ)2+16E4)4E4(1cosθ)2)


dσdΩ=α28E24E4((4E4(1cosθ)2+16E4)(1+cosθ)232E2(1+cosθ)(1cosθ)+(4E4(1+cosθ)2+16E4)(1cosθ)2)