Differential Cross-Section

From New IAC Wiki
Revision as of 16:40, 25 June 2017 by Vanwdani (talk | contribs)
Jump to navigation Jump to search
Feynman1stLevel.png


M=M1+M2


-i \mathfrak{M}_1=ie(\mathbf p_1+\mathbf p_1^')^{\mu} \left (\frac{-ig_{\mu \nu}}{q^2} \right ) ie ( \mathbf p_{2}+\mathbf p_2^')^{\nu} \qquad \qquad -i \mathfrak{M}_2=ie(\mathbf p_1+\mathbf p_2^')^{\mu} \left (\frac{-ig_{\mu \nu}}{q^2} \right ) ie ( \mathbf p_{2}+\mathbf p_1^')^{\nu}


-i \mathfrak{M}_1=ie(\mathbf p_1+\mathbf p_1^')^{\mu} \left (\frac{-ig_{\mu \nu}}{(\mathbf p_2^'-\mathbf p_2)^2} \right ) ie( \mathbf p_{2}+\mathbf p_2^')^{\nu} \qquad  \qquad -i \mathfrak{M}_2=ie(\mathbf p_1+\mathbf p_2^')^{\mu} \left (\frac{-ig_{\mu \nu}}{(\mathbf p_1^'-\mathbf p_2)^2} \right ) ie( \mathbf p_{2}+\mathbf p_1^')^{\nu}


-i \mathfrak{M}_1=ie^2\left (\frac{(\mathbf p_1+\mathbf p_1^')_{\mu} (\mathbf p_{2}+\mathbf p_2^')^{\mu}}{(\mathbf p_2^'-\mathbf p_2)^2} \right ) \qquad \qquad -i \mathfrak{M}_2=ie^2\left (\frac{(\mathbf p_1+\mathbf p_2^')_{\mu} (\mathbf p_{2}+\mathbf p_1^')^{\mu}}{(\mathbf p_1^'-\mathbf p_2)^2} \right )


Without loss of generality, we can extend this to the center of mass frame


iMee=i(e2(p1+p1)μ(p2+p2)μ(p2p2)2e2(p1+p2)μ(p2+p1)μ(p1p2)2)


Mee=e2(P1P2+P1P2+P1P2+P1P2(P2P2)2P1P2+P2P1+P2P2+P1P1(P1P2)2)



Using the fact that P1P2=P1P2P1P1=P2P2P1P2=P2P1


Mee=e2(2P1P2+2P1P2(P222P2P2+P22)2P1P2+2P1P1(P212P1P2+P22))


Mee=e2(2P1P2+2P1P2(P222P2P2+P22)2P1P2+2P1P1(P222P2P1+P21))


Mee=e2(2P1P2+2P1P2(P2P2)22P1P2+2P1P1(P2P1)2)



Mee=e2((P212P1P2+P22)(P21+2P1P2+P22)t(P212P1P1+P21)(P21+2P1P2+P22)u)


Mee=e2(ust+tsu)