Right Hand Wall

From New IAC Wiki
Revision as of 03:36, 28 April 2017 by Vanwdani (talk | contribs)
Jump to navigation Jump to search

This same process can be applied to the side walls for the detector. For the sidewalls, we have approximated them as lines following the equation

[math]x=cot\ 29.5^{\circ}\ y + 0.09156[/math]

Parameterizing this

[math]r \mapsto {y\ cot\ 29.5^{\circ} + 0.09156, y, 0}[/math]


[math]t \mapsto {t\ cos\ 29.5^{\circ} + 0.09156, t\ sin\ 29.5^{\circ} , 0}[/math]


[math]\begin{bmatrix} x'' \\ y'' \\ z'' \end{bmatrix}= \begin{bmatrix} cos\ 6^{\circ} & -sin\ 6^{\circ} & 0 \\ sin\ 6^{\circ} & cos\ 6^{\circ}& 0 \\ 0 & 0 & 1 \end{bmatrix}\cdot \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}[/math]



[math]\begin{bmatrix} x'' \\ y'' \\ z'' \end{bmatrix}= \begin{bmatrix} cos\ 6^{\circ} & -sin\ 6^{\circ} & 0 \\ sin\ 6^{\circ} & cos\ 6^{\circ}& 0 \\ 0 & 0 & 1 \end{bmatrix}\cdot \begin{bmatrix} t\ cos\ 29.5^{\circ}+0.09156 \\ t sin 29.5^{\circ}\\ 0 \end{bmatrix}[/math]



[math]\begin{bmatrix} x'' \\ y'' \\ z'' \end{bmatrix}= \begin{bmatrix} 0.09156\ cos\ 6^{\circ}+t\ cos\ 6 ^{\circ}cos\ 29.5^{\circ}-t\ sin\ 6 ^{\circ}sin\ 29.5^{\circ} \\ t\ cos\ 6 ^{\circ}sin\ 29.5^{\circ}+0.09156\ sin\ 6^{\circ}+t\ cos\ 29.5^{\circ}sin\ 6^{\circ} \\ 0 \end{bmatrix}[/math]


[math]\begin{bmatrix} x'' \\ y'' \\ z'' \end{bmatrix}= \begin{bmatrix} 0.09156\ cos\ 6^{\circ}+t\ (cos\ 6^{\circ}cos\ 29.5^{\circ}- sin\ 6 ^{\circ}sin\ 29.5^{\circ}) \\ 0.09156\ sin\ 6 ^{\circ}+t\ (sin\ 6^{\circ} cos\ 29.5^{\circ}+cos\ 6 ^{\circ}sin\ 29.5^{\circ}) \\ 0 \end{bmatrix}[/math]

Using the equation for y we can solve for t

[math]y''=0.09156\ sin\ 6^{\circ}+t (sin\ 6^{\circ} cos\ 29.5^{\circ}+cos\ 6 ^{\circ}sin\ 29.5^{\circ}) \Rightarrow t=\frac{y''-0.09156\ sin\ 6 ^{\circ}}{sin\ 6^{\circ} cos\ 29.5^{\circ}+cos\ 6^{\circ}sin\ 29.5^{\circ}}[/math]

Substituting this into the expression for x

[math]x''=0.09156\ cos\ 6^{\circ}+t\ (cos\ 6^{\circ}cos\ 29.5^{\circ}- sin\ 6^{\circ} sin\ 29.5^{\circ})[/math]


[math]x''=0.09156\ cos\ 6 ^{\circ}+\frac{y''-0.09156\ sin\ 6^{\circ}}{sin\ 6^{\circ} cos\ 29.5^{\circ}+cos\ 6^{\circ}sin\ 29.5^{\circ}} (cos\ 6^{\circ}cos\ 29.5^{\circ}- sin\ 6^{\circ} sin\ 29.5^{\circ})[/math]


[math]x''=0.09156\ cos\ 6^{\circ}+\frac{y''-0.09156\ sin\ 6^{\circ}}{sin\ 6^{\circ} cos\ 29.5^{\circ}+cos\ 6 ^{\circ}sin\ 29.5^{\circ}} (cos\ 6 ^{\circ}cos\ 29.5^{\circ}- sin\ 6^{\circ}sin\ 29.5^{\circ})[/math]


[math]x''=(0.994522)0.09156+\frac{y''-0.09156 (0.104528) }{0.0909769+.489726} (0.865588- 0.051472)[/math]


[math]x''=(0.091058)+\frac{y''-.0095706 }{0.580703} (.814116)[/math]


[math]x''=(0.091058)+(y''-.0095706 ) (1.401949)[/math]


[math]x''=1.401949\ y''-.013417+.091058[/math]


[math]x''=1.401949\ y''+.077641[/math]


rightRotated = 
  ContourPlot[x2 == 1.401949 y + 0.077641, {y, -1, 1}, {x2, 0, 1.8}, 
   Frame -> {True, True, False, False}, 
       PlotLabel -> 
    "Right side limit of DC as a function of X and Y", 
   FrameLabel -> {"y (meters)", "x (meters)"}, 
   ContourStyle -> Black, 
       PlotLegends -> Automatic];