Right Hand Wall
Jump to navigation
Jump to search
This same process can be applied to the side walls for the detector. For the sidewalls, we have approximated them as lines following the equation
Parameterizing this
(x y z
)= (0.09156cos 6 \[Degree]+t cos 6 \[Degree]cos 29.5\[Degree]-t sin 6 \[Degree]sin 29.5\[Degree] t cos 6 \[Degree]sin 29.5\[Degree]+0.09156 sin 6 \[Degree]+t cos 29.5\[Degree]sin 6 \[Degree] 0
)
(x y z
)= (0.09156cos 6 \[Degree]+t (cos 6 \[Degree]cos 29.5\[Degree]- sin 6 \[Degree]sin 29.5\[Degree]) 0.09156 sin 6 \[Degree]+t (sin 6 \[Degree] cos 29.5\[Degree]+cos 6 \[Degree]sin 29.5\[Degree]) 0
)
Using the equation for y we can solve for t
Substituting this into the expression for x
rightRotated = ContourPlot[x2 == 1.401949 y + 0.077641, {y, -1, 1}, {x2, 0, 1.8}, Frame -> {True, True, False, False}, PlotLabel -> "Right side limit of DC as a function of X and Y", FrameLabel -> {"y (meters)", "x (meters)"}, ContourStyle -> Black, PlotLegends -> Automatic];