Scattering Cross Section

From New IAC Wiki
Jump to navigation Jump to search

Scattering Cross Section

Scattering.png


dσdΩ=(number of particles scattered/seconddΩ)(number of incoming particles/secondcm2)=dNLdΩ=differential scattering cross section


where dΩ=sinθdθdϕ


σ=πθ=02πϕ=0(dσdΩ) sinθdθdϕ=NLtotal scattering cross section

Since this is just a ratio of detected particles to total particles, this gives the cross section as a relative probablity of a scattering, or reaction, to occur.

Transforming Cross Section Between Frames

Transforming the cross section between two different frames of reference has the condition that the quantity must be equal in both frames. This is due to the fact that

σ=NL=constant number


This makes the total cross section a Lorentz invariant in that it is not effected by any relativistic transformations

 σCM=σLab


This implies that the number of particles going into the solid-angle element d ΩLab and having a momentum between pLab and pLab+dpLabbe the same as the number going into the corresponding solid-angle element CM and having a corresponding momentum between pCM and pCM+dpCM


2σLab\partialpLabΩLabdpLabdΩLab=2σCM\partialpCMΩCMdpCMdΩCM


where dΩ=sinθdθdϕ


2σLab\partialpLabΩLab\partialpLabsinθLabdθLabdϕLab=d2σCMdpCMdΩCMdpCMsinθCMdθCMdϕCM


As shown earlier,

ϕLab=ϕCM


 dϕLab=dϕCM


2σLab\partialpLabΩLabdpLabsinθLabdθLab=2σCM\partialpCMΩCMdpCMsinθCMdθCM


We can use the fact that

sinθ dθ=d(cosθ)


2σLab\partialpLabΩLabdpLabd(cosθLab)=2σCM\partialpCMΩCMdpCMd(cosθCM)



2σLab\partialpLabΩLab=2σCM\partialpCMΩCMdpCMd(cosθCM)dpLabd(cosθLab)


2σLab\partialpLabΩLab=2σCM\partialpCMΩCM(pCMcosθCM)(pLabcosθLab)


We can use the chain rule to find the transformation term on the right hand side:

(pcosθ)(pθϕ)(pθϕ)(pxpypz)(pxpypz)(pxpypz)(pxpypz)(pθϕ)(pθϕ)(pcosθ)=(pcosθ)(pcosθ)


(pcosθ)(pθϕ)=\partialpsinθθϕ\partialpθϕ=sinθ


Similarly,


(pθϕ)(pcosθ)=1sinθ


Using the conversion of cartesian to spherical coordinates we know:

{px=psinθcosϕpy=psinθsinϕpz=pcosθ


and the fact that as was shown earlier, that


{px=pxpy=pyϕ=ϕ


This allows us to express the term:

(pθϕ)(pxpypz)=[(pxpypz)(pθϕ)]1=[(psinθcosϕpsinθsinϕpcosθ)\partialpθϕ]1


(pθϕ)(pxpypz)=[\partialp1cosθ1\partialpdθ]=1p2sinθ


Again, similarly


(pxpypz)(pθϕ)=p2sinθ


To find the middle component in the chain rule expansion,

(Epxpypz)=(γ00βγ01000010βγ00γ).(Epxpypz)

which gives,


{E=γEβγpzpz=βγE+γpz


(pxpypz)(pxpypz)=\partialpz\partialpz=(βγE+γpz)\partialpz=βγ\partialE\partialpz+γ