Scattering Cross Section
dσdΩ=(number of particles scattered/seconddΩ)(number of incoming particles/secondcm2)=dNLdΩ=differential scattering cross section
where dΩ=sinθdθdϕ
⇒σ=π∫θ=02π∫ϕ=0(dσdΩ) sinθdθdϕ=NL≡total scattering cross section
Since this is just a ratio of detected particles to total particles, this gives the cross section as a relative probablity of a scattering, or reaction, to occur.
Transforming Cross Section Between Frames
Transforming the cross section between two different frames of reference has the condition that the quantity must be equal in both frames. This is due to the fact that
σ=NL=constant number
This makes the total cross section a Lorentz invariant in that it is not effected by any relativistic transformations
∴ σCM=σLab
This implies that the number of particles going into the solid-angle element d ΩLab and having a momentum between pLab and pLab+dpLabbe the same as the number going into the corresponding solid-angle element dΩCM and having a corresponding momentum between pCM and pCM+dpCM
∂2σLab\partialpLab∂ΩLabdpLabdΩLab=∂2σCM\partialpCM∂ΩCMdpCMdΩCM
where dΩ=sinθdθdϕ
∂2σLab\partialpLab∂ΩLab\partialpLabsinθLabdθLabdϕLab=d2σCMdpCMdΩCMdpCMsinθCMdθCMdϕCM
As shown earlier,
ϕLab=ϕCM
⇒ dϕLab=dϕCM
∂2σLab\partialpLab∂ΩLabdpLabsinθLabdθLab=∂2σCM\partialpCM∂ΩCMdpCMsinθCMdθCM
We can use the fact that
sinθ dθ=d(cosθ)
∂2σLab\partialpLab∂ΩLabdpLabd(cosθLab)=∂2σCM\partialpCM∂ΩCMdpCMd(cosθCM)
∂2σLab\partialpLab∂ΩLab=∂2σCM\partialpCM∂ΩCMdpCMd(cosθCM)dpLabd(cosθLab)
∂2σLab\partialpLab∂ΩLab=∂2σCM\partialpCM∂ΩCM∂(pCMcosθCM)∂(pLabcosθLab)
We can use the chain rule to find the transformation term on the right hand side:
∂(p∗cosθ∗)∂(p∗θ∗ϕ∗)∂(p∗θ∗ϕ∗)∂(p∗xp∗yp∗z)∂(p∗xp∗yp∗z)∂(pxpypz)∂(pxpypz)∂(pθϕ)∂(pθϕ)∂(pcosθ)=∂(p∗cosθ∗)∂(pcosθ)
∂(p∗cosθ∗)∂(p∗θ∗ϕ∗)=\partialp∗sinθ∗∂θ∗∂ϕ∗\partialp∗∂θ∗∂ϕ∗=sinθ∗
Similarly,
∂(pθϕ)∂(pcosθ)=1sinθ
Using the conversion of cartesian to spherical coordinates we know:
{px=psinθcosϕpy=psinθsinϕpz=pcosθ
and the fact that as was shown earlier, that
{p∗x=pxp∗y=pyϕ∗=ϕ
This allows us to express the term:
∂(p∗θ∗ϕ∗)∂(p∗xp∗yp∗z)=[∂(p∗xp∗yp∗z)∂(p∗θ∗ϕ∗)]−1=[∂(p∗sinθ∗cosϕ∗p∗sinθ∗sinϕ∗p∗cosθ∗)\partialp∗∂θ∗∂ϕ∗]−1
∂(p∗θ∗ϕ∗)∂(p∗xp∗yp∗z)=[\partialp∗−1cosθ∗−1\partialpdθ∗]=1p∗2sinθ∗
Again, similarly
∂(pxpypz)∂(pθϕ)=p2sinθ
To find the middle component in the chain rule expansion,
(E∗p∗xp∗yp∗z)=(γ∗00−β∗γ∗01000010−β∗γ∗00γ∗).(Epxpypz)
which gives,
⟹{E∗=γ∗E−β∗γ∗pzp∗z=−β∗γ∗E+γ∗pz
∂(p∗xp∗yp∗z)∂(pxpypz)=\partialp∗z\partialpz=∂(−β∗γ∗E+γ∗pz)\partialpz=−β∗γ∗\partialE\partialpz+γ∗