Hooke's Law
Derivation
In the previous chapter we saw how the equations of motion could from the requirement that Energy be conserved.
- [math]E = T + U[/math]
- [math] T = E - U[/math]
- [math] \frac{1}{2} m v^2 = E- U[/math]
in 1-D
- [math] \dot {x}^2 = \frac{2}{m} \left ( E-U(x) \right )[/math]
- [math] \dot {x}^2= \frac{2}{m} \left ( E-U(x) \right )[/math]
- [math] \dot {x}= \sqrt{\frac{2}{m} \left ( E-U(x) \right )}[/math]
- [math] \frac{dx}{dt}= \sqrt{\frac{2}{m} \left ( E-U(x) \right )}[/math]
- [math] \frac{dx}{ \sqrt{\frac{2}{m} \left ( E-U(x) \right )}}=dt[/math]
- [math] \sqrt{\frac{m}{2}} \int \frac{dx}{ \sqrt{\left ( E-U(x) \right )}}=\int dt[/math]
Let consider the cas where an object is oscillating about a point of stability [math](x_0)[/math]
A Taylor expansion of the Potential function U(x) about the equalibrium point [math](x_0)[/math] is
- [math]U(x) = U(x_0) + \left . \frac{\partial U}{\partial x} \right |_{x=x_0} (x-x_0) + \frac{1}{2!}\left . \frac{\partial^2 U}{\partial x^2} \right |_{x=x_0} (x-x_0)^2 + \frac{1}{3!}\left . \frac{\partial^3 U}{\partial x^3} \right |_{x=x_0} (x-x_0)^3 + \dots [/math]
Interpretation (Hooke's law
The Force exerted by a spring is proportional to the spring displacement from equilibrium and is directed towards restoring the equilibrium condition. (a linear restoring force).
In 1-D this force may be written as
- [math]F = - kx[/math]
Is this a conservative force?
1.) The force only depends on position.
2.) The work done is independent of path ( [math]\vec \nabla \times \vec F = 0[/math] in 1-D and 3-D)
Potential
- [math]U = - \int \vec F \cdot \vec r = - \int (-kx) dx = \frac{1}{2} k x^2[/math]
Simple Harmonic Motion (SHM)
2-D Oscillators
Damped Oscillations
Resonance
Forest_Ugrad_ClassicalMechanics