Forest UCM NLM BlockOnIncline

From New IAC Wiki
Jump to navigation Jump to search

the problem

Consider a block of mass m sliding down the inclined plane shown below with a frictional force that is given by

[math]F_f = kmv^2[/math]


200 px

Find the blocks speed as a function of time.

Step 1: Identify the system

The block is the system with the following external forces, A normal force, a gravitational force, and the force of friction.

Step 2: Choose a suitable coordinate system

A coordinate system with one axis along the direction of motion may make solving the problem easier

Step 3: Draw the Free Body Diagram

200 px

Step 4: Define the Force vectors using the above coordinate system

[math]\vec{N} = \left | \vec{N} \right | \hat{j}[/math]
[math]\vec{F_g} = \left | \vec{F_g} \right | \left ( \sin \theta \hat{i} - \cos \theta \hat{j} \right )= mg \left ( \sin \theta \hat{i} - \cos \theta \hat{j} \right )[/math]
[math]\vec{F_f} = - kmv^2 \hat{i}[/math]

Step 5: Used Newton's second law

in the [math]\hat i[/math] direction

[math]\sum F_{ext} = mg \sin \theta -mkv^2 = ma_x = m \frac{dv_x}{dt}[/math]
[math]\int dt = \int \frac{dv}{g\sin \theta - mkv^2}[/math]

Integral table [math]\Rightarrow[/math]

[math]\int \frac{dx}{a^2 + b^2x^2} = \frac{1}{ab} \tan^{-1} \frac{bx}{a}[/math]

Forest_UCM_NLM#Block_on_incline_with_friction