EG1BFragmentationTestTalk
Fragmentation Test
The goal of this work is to measure the fragmentation function dependence on the Bjorken scaling variable (
Data Files
The data files from the EG1b experiment chosen for this analysis are listed below
Run Set | Target Type | Torus Current(A) | Target Polarization | Half Wave Plane(HWP) |
28100 - 28102 | ND3 | +2250 | -0.18 | +1 |
28106 - 28115 | ND3 | +2250 | -0.18 | -1 |
28145 - 28158 | ND3 | +2250 | -0.20 | +1 |
28166 - 28190 | ND3 | +2250 | +0.30 | +1 |
28205 - 28217 | NH3 | +2250 | +0.75 | +1 |
28222 - 28236 | NH3 | +2250 | -0.68 | +1 |
28242 - 28256 | NH3 | +2250 | -0.70 | -1 |
28260 - 28275 | NH3 | +2250 | +0.69 | -1 |
28287 - 28302 | ND3 | -2250 | +0.28 | +1 |
28306 - 28322 | ND3 | -2250 | -0.12 | +1 |
28375 - 28399 | ND3 | -2250 | +0.25 | -1 |
28407 - 28417 | NH3 | -2250 | +0.73 | -1 |
28456 - 28479 | NH3 | -2250 | -0.69 | +1 |
EG1b Runs used for Analysis (Run Sets, Target Type, Torus Current, Target Polarization, HWP). |
Electron-Pion separation
The CLAS trigger system is a coincidence of the negatively charged particle track detected in the electromagnetic calorimeter and cherenkov counter in
EC Cuts
The energy deposited in the calorimeter for electrons and pions is different. Pions are minimum ionizing charged particles when their momentum is above ~ 0.8 GeV and therefore the energy they deposit in the calorimeter is momentum independent. On the other hand, electrons produce photoelectrons and generate an electromagnetic shower releasing energy into the calorimeter that is proportional to their momentum. The following cut is introduced to take advantage of this feature:
vs before and after EC cuts ( , for EC inner - ). After applying EC cuts about 46 % of the events have been removed from the electron sample. |
Cherenkov Cuts
In addition to the cut on the energy deposited into the electromagnetic calorimeter, misidentified electrons are reduced by requiring a signal in the threshold CLAS Cherenkov detector. Pion's misidentified as electrons have been shown to produce around ~1.5 photoelectons (PEs) in the Cherenkov detector, as shown below. Geometrical cuts on the location of the particle at the entrance to the Cerenkov detector were applied to reduce the pion contamination. The second histogram below shows that, after these cuts, the peak around 1.5 PEs is substantially reduced. It appears, that pion contamination in electron sample is
The number of photoelectrons before and after OSI Cuts. |