Emittance
What is Emittance
In accelerator physics, Cartesian coordinate system was used to describe motion of the accelerated particles. Usually the z-axis of Cartesian coordinate system is set to be along the electron beam line as longitudinal beam direction. X-axis is set to be horizontal and perpendicular to the longitudinal direction, as one of the transverse beam direction. Y-axis is set to be vertical and perpendicular to the longitudinal direction, as another transverse beam direction.
For the convenience of representation, we use [math]z[/math] to represent our transverse coordinates, while discussing emittance. And we would like to express longitudinal beam direction with [math]s[/math]. Our transverse beam profile changes along the beam line, it makes [math]z[/math] is function of [math]s[/math], [math]z~(s)[/math]. The angle of a accelerated charge regarding the designed orbit can be defined as:
[math]z'=\frac{dz}{ds}[/math]
If we plot [math]z[/math] vs. [math]z'[/math], we will get an ellipse. The area of the ellipse is an invariant, which is called Courant-Snyder invariant. The transverse emittance [math]\epsilon[/math] of the beam is defined to be the area of the ellipse, which contains 90% of the particles <ref name="MConte08"> M. Conte and W. W. MacKay, “An Introduction To The Physics Of Particle Accelera
tors”, World Scientifc, Singapore, 2008, 2nd Edition, pp. 257-330. </ref>.
  Fig.1 Phase space ellipse <ref name="MConte08"></ref>.
 
Measurement of Emittance with Quad Scanning Method
In quadrupole scan method, a quadrupole and a Yttrium Aluminum Garnet (YAG ) screen was used to measure emittance. Magnetic field strength of the quadrupole was changed in the process and corresponding beam shapes were observed on the screen.
Transfer matrix of a quadrupole magnet under thin lens approximation:
- [math]
\left( \begin{matrix} 1 & 0 \\ -k_{1}L & 1  \end{matrix} \right)=\left( \begin{matrix} 1 & 0 \\ -\frac{1}{f} & 1  \end{matrix} \right)
[/math]
 
Here, [math]k_{1} L[/math] is quadrupole strength, [math]L[/math] is quadrupole magnet thickness, and f is quadrupole
focal length. [math] k_{1} L \gt  0 [/math] for x-plane, and [math] k_{1} L \lt  0 [/math] for y-plane. Transfer matrix of a drift
space between quadrupole and screen:
- [math]  \mathbf{S} = \left( \begin{matrix} S_{11} & S_{12} \\S_{21} & S_{22}  \end{matrix} \right)=\left( \begin{matrix} 1 & l \\ 0 & 1  \end{matrix} \right)
[/math]
 
Here,  [math]l[/math] ([math]S_{12}[/math]) is the distance from the center of the quadrupole to the screen.
Transfer matrix of the scanned region is:
[math]
\mathbf{M}  =
\mathbf{SQ}  =
 \begin{pmatrix}
  m_{11} & m_{12}   \\
  m_{21} & m_{22}
 \end{pmatrix}=
 \begin{pmatrix}
  S_{11} & S_{12}   \\
  S_{21} & S_{22}
 \end{pmatrix}
 \begin{pmatrix}
  1 & 0   \\
  -k_1L & 1
 \end{pmatrix}=
 \begin{pmatrix}
  S_{11} - k_1LS_{12} & S_{12}   \\
  S_{21} - k_1L S_{22} & S_{22}
 \end{pmatrix}
[/math]
[math]\mathbf{M}[/math] is related with the beam matrix [math]\mathbf{\sigma}[/math] as:
[math]
\mathbf{ \sigma_{screen}}  =
\mathbf{M \sigma_{quad} M^T}  =
 \begin{pmatrix}
  m_{11} & m_{12}   \\
  m_{21} & m_{22}
 \end{pmatrix}
 \begin{pmatrix}
  \sigma_{quad, 11} &  \sigma_{quad, 12}   \\
  \sigma_{quad, 21} &  \sigma_{quad, 22}
 \end{pmatrix}
 \begin{pmatrix}
  m_{11} & m_{12}   \\
  m_{21} & m_{22}
 \end{pmatrix}
[/math]
Since: 
[math]
 \sigma_{x}=\sqrt{\epsilon_x\beta},~\sigma_{x'}=\sqrt{\epsilon_x\gamma},~\sigma_{xx'}={-\epsilon_x\alpha}
[/math]
[math]
\mathbf{ \sigma}  =
 \begin{pmatrix}
  \sigma_{11} &  \sigma_{12}   \\
   \sigma_{21} &  \sigma_{22}
 \end{pmatrix} =
 \begin{pmatrix}
  \sigma_{x}^2 &  \sigma_{xx'}   \\
   \sigma_{xx'} &  \sigma_{x'}^2
 \end{pmatrix}
[/math]
So, [math]\mathbf{\sigma}[/math] matrix can be written as:
[math]
\mathbf{\sigma}_{quad}  =
 \begin{pmatrix}
  \sigma_{quad, x} &  \sigma_{quad, xx'}   \\
   \sigma_{quad, xx'} &  \sigma_{quad, x,}
 \end{pmatrix} =
 \epsilon_{rms, x}
 \begin{pmatrix}
  \beta     & -\alpha    \\
  -\alpha  &  \gamma 
 \end{pmatrix}
[/math]
Substituting this give:
[math]
\mathbf{ \sigma_{screen}}  =
\mathbf{M \sigma_{quad} M^T}  =
 \begin{pmatrix}
  m_{11} & m_{12}   \\
  m_{21} & m_{22}
 \end{pmatrix}
 \epsilon_{rms, x}
 \begin{pmatrix}
  \beta     & -\alpha    \\
  -\alpha  &  \gamma 
 \end{pmatrix}
 \begin{pmatrix}
  m_{11} & m_{12}   \\
  m_{21} & m_{22}
 \end{pmatrix}
[/math]
References
<references/>
Using APA reference style. 
File:Emittance.tex
Go back: Positrons