Go Back to All Lab Reports
- RC Low-pass filter
 
1-50 kHz filter (20 pnts)
1. Design a low-pass RC filter with a break point between 1-50 kHz.  The break point is the frequency at which the filter starts to attenuate the AC signal.  For a Low pass filter, AC signals with a frequency above 1-50 kHz will start to be attenuated (not passed)
- To design low-pass RC filter I had:
 
[math]R=10.5\ \Omega[/math]  
[math]C=1.250\ \mu F[/math]
So
[math]\omega_b = \frac{1}{RC} = 76.19\cdot 10^3\ \frac{rad}{s}[/math]
[math]f_b = \frac{\omega_b}{2\pi} = 12.13\ \mbox{kHz}[/math]
2. Now construct the circuit using a non-polar capacitor
3. Use a sinusoidal variable frequency oscillator to provide an input voltage to your filter
4. Measure the input [math](V_{in})[/math] and output [math](V_{out})[/math] voltages for at least 8 different frequencies[math] (\nu)[/math]  which span the frequency range from 1 Hz to 1 MHz
Table1. Voltage gain vs. frequency measurements
| [math]\nu\ [\mbox{kHz}][/math]
 | 
[math]V_{in}\ [V][/math]
 | 
[math]V_{out}\ [V][/math]
 | 
[math]\frac{V_{out}}{V_{in}}[/math]
 | 
| 0.1 | 
5.0 | 
5.0 | 
1.0
 | 
| 1.0 | 
4.2 | 
4.2 | 
1.0
 | 
| 2.0 | 
3.2 | 
3.1 | 
0.97
 | 
| 5.0 | 
1.8 | 
1.6 | 
0.89
 | 
| 10.0 | 
1.14 | 
0.88 | 
0.77
 | 
| 16.7 | 
0.90 | 
0.54 | 
0.60
 | 
| 20.0 | 
0.88 | 
0.48 | 
0.54
 | 
| 25.0 | 
0.82 | 
0.38 | 
0.46
 | 
| 33.3 | 
0.78 | 
0.28 | 
0.36
 | 
| 50.0 | 
0.76 | 
0.18 | 
0.24
 | 
| 100.0 | 
0.75 | 
0.09 | 
0.12
 | 
| 125.0 | 
0.74 | 
0.07 | 
0.095
 | 
| 200.0 | 
0.75 | 
0.04 | 
0.053
 | 
| 333.3 | 
0.76 | 
0.03 | 
0.039
 | 
| 200.0 | 
0.76 | 
0.03 | 
0.039
 | 
| 1000.0 | 
0.78 | 
0.06 | 
0.077
 | 
5. Graph the [math]\log \left(\frac{V_{out}}{V_{in}} \right)[/math] -vs- [math]\log (\nu)[/math]
phase shift (10 pnts)
- measure the phase shift between [math]V_{in}[/math] and [math]V_{out}[/math] as a function of frequency [math]\nu[/math].  Hint: you could use [math] V_{in}[/math] as an external trigger and measure the time until [math]V_{out}[/math] reaches a max on the scope [math](\sin(\omega t + \phi) = \sin\left ( \omega\left [t + \frac{\phi}{\omega}\right]\right )= \sin\left ( \omega\left [t + \delta t \right] \right ))[/math].
 
See question 4 about my phase shift measurements
Questions
1. Compare the theoretical and experimentally measured break frequencies. (5 pnts)
method 1. Using fitting line
- Theoretical break frequency: [math]12.13\ \mbox{kHz}[/math]
 
- Experimentally measured break frequency: [math]9.59\ \mbox{kHz}[/math]
 
 Q: The above was read off the graph?  Why not use fit results?
 A: The fit was made by using GIMP Image Editor. I do not have so much experience with ROOT. But I will try to do it. Thank you for comment.
 A1: The fit was done by ROOT
- The fit line equation from the plot above is [math]\ y=0.8989-0.915\cdot x[/math].
 
- From intersection point of line with x-axis we find:
 
- [math]\mbox{log}(f_{exper})=\frac{0.8989}{0.915} = 0.982[/math]
 
- [math]f_{exp} = 10^{0.982} = 9.59\ \mbox{kHz} [/math]
 
- The error is:
 
[math]Error = \left| \frac{f_{exp} - f_{theor}}{f_{theor}} \right| = \left| \frac{9.59 - 12.13}{12.13} \right|= 20.9\ %[/math]
method 2.  Using the -3 dB point
At the break point the voltage gain is down by 3 dB relative to the gain of unity at zero frequency. So the value of [math]\mbox{log}(V_{out}/V_{in}) = (3/20) = 0.15 [/math]. Using this value I found from plot above [math]\mbox{log}(f_b) = 1.1\ \mbox{kHz}[/math]. So [math]f_b = (10^{1.1}) = 12.59\ \mbox{kHz}[/math]. The error in this case is [math]4.1\ %[/math]
2. Calculate and expression for [math]\frac{V_{out}}{ V_{in}}[/math] as a function of [math]\nu[/math], [math]R[/math], and [math]C[/math].  The Gain is defined as the ratio of [math]V_{out}[/math] to [math]V_{in}[/math].(5 pnts)
We have:
- [math]1)\ V_{in} = I\left(R+R_C\right) = I\left(R+\frac{1}{i\omega C}\right)[/math]
 
- [math]2)\ V_{out} = I \left(\frac{1}{i\omega C}\right) [/math]
 
Dividing second equation into first one we get the voltage gain: 
- [math]\ \frac{V_{out}}{V_{in}} = \frac{I \left(\frac{1}{i\omega C}\right)}{I\left(R+\frac{1}{i\omega C}\right)} = \frac{\left(\frac{1}{i\omega C}\right)}{\left(R+\frac{1}{i\omega C}\right)} = \frac{1}{1+i\omega RC}[/math]
 
And we are need the real part:
- [math]\left |\frac{V_{out}}{V_{in}} \right | = \sqrt{ \left( \frac{V_{out}}{V_{in}} \right)^* \left( \frac{V_{out}}{V_{in}} \right)} = \sqrt{\left ( \frac{1}{1+i\omega RC}\right ) \left ( \frac{1}{1-i\omega RC}\right )} = \frac{1}{\sqrt{(1 + (\omega RC)^2}} =  \frac{1}{\sqrt{(1 + (2\pi fRC)^2}}[/math]
 
3. Sketch the phasor diagram for [math]V_{in}[/math],[math] V_{out}[/math], [math]V_{R}[/math], and [math]V_{C}[/math]. Put the current [math]I[/math] along the real voltage axis. (30 pnts)
4. Compare the theoretical and experimental value for the phase shift [math]\theta[/math]. (5 pnts)
The experimental phase shift is [math]\ \Theta_{\mbox{exper}} = (\omega\ \delta T)_{\mbox{exper}}[/math]
The theoretical phase shift is [math]\ \Theta_{\mbox{theory}}=\mbox{arctan}(\omega RC)[/math]
5. what is the phase shift [math]\theta[/math] for a DC input and a very-high frequency input?(5 pnts)
6. calculate and expression for the phase shift [math]\theta[/math] as a function of [math]\nu[/math], [math]R[/math], [math]C[/math] and graph [math]\theta[/math] -vs [math]\nu[/math]. (20 pnts)
Forest_Electronic_Instrumentation_and_Measurement
Go Back to All Lab Reports