TF DerivationOfCoulombForce

From New IAC Wiki
Revision as of 08:19, 23 February 2009 by Oborn (talk | contribs)
Jump to navigation Jump to search
Poisson's Equation
2ϕ(ξ)=ρϵ0=eϵ0δ(ξ)

Fourier Transform of Poisson's Equation

1(2π)3/2eikξ2ϕ(ξ)dV=1(2π)3/2eϵ0eikξδ(ξ)dV
1(2π)3/2eikξ(ϕ(ξ))dV=e(2π)3/2ϵ0(1)

Product rule for dervatives

1(2π)3/2{(eikξϕ)(eikξ)(ϕ)}dV=e(2π)3/2ϵ0(1)


Gauss' Theorem:

(eikξϕ)dV=SeikξdA


Definition of derivative:

(eikξ)(ϕ)=(ϕeik)ϕ2eikξ


Substituting

1(2π)3/2{eikξϕdA(ϕeikξ)dV+ϕ2eikξdV}=e(2π)3/2ϵ0


Gauss' Low:

(ϕeikξ)dV=ϕeikξdA


1(2π)3/2{{eikξϕϕeikξ}dA+ϕ2eikξdV}=e(2π)3/2ϵ0


1(2π)3/2ϕ(ik)(ik)eikξdV=e(2π)3/2ϵ0


k21(2π)3/2ϕ(ξ)eikξdVxi=e(2π)3/2ϵ0

k2ϕ(k)=e(2π)3/2ϵ0

1.) Coulomb ϕ(k)=e(2π)3/2ϵ01k2 = potential in "k"(momentum) space

To find the potential in "coordinate" (ξ) space just inverse transform

ϕ(ξ)=1(2π)3/2e+ikξϕ(k)dVk
=1(2π)3/2eikξe2π)3/2ϵ01k2dVk
=e(2π)3ϵ0eikξk2dVk


dVk=k2sinθkdθkdϕkdk


=e(2π)3ϵ002πdϕk0πdθk0dk×k2sinθkeikξ
=e(2π)2ϵ00π0sinθkeikξcosθkk2dk

u=cosθ

du=sinθdθ


ϕ(ξ)=e4π2ϵ00infty11eikξuk2duk2dk
=e4π2ϵ00inftyeikξeikξikξdk
=e4π2ϵ01iξ(iπ)=e4π2ϵ01ξ
=\frac{e}{4 {\pi}^2 \epsilon_0} \frac{1}{|\vec{r} - \vec{r}^'|} = Coulomb potential
2) Nuclear potential

Consider the force field generated by a point source (nucleon) at location r from the origin of a coordinate system.

300px

Assume a particle of mass m is e charged to generate the field (In Coulomb force particle was m=o photon).

Definition of relativistic Energy:

E2=(mc2)2+(cp)2

In terms of Hamiltonian

d2dt2ϕ(r)={(mc2)2+(ci)2}ϕ(r)


In a static case

((mc2)2c222)ϕ(r)=0

[2(mc)2)ϕ(r)=0