Frame of Reference Transformation

From New IAC Wiki
Revision as of 18:47, 15 May 2018 by Vanwdani (talk | contribs)
Jump to navigation Jump to search
Navigation_

Frame of Reference Transformation

Using the Lorentz transformations and the index notation,

{t=γ(tvz/c2)x=xy=yz=γ(zvt)


[x0x1x2x3]=[γ(x0vx3/c)x1x2γ(x3vx0)]=[γ(x0βx3)x1x2γ(x3vx0)]


Where βvc

This can be expressed in matrix form as

[x0x1x2x3]=[γ00γβ01000010γβ00γ][x0x1x2x3]


Letting the indices run from 0 to 3, we can write

xμ=3ν=0(Λμν)xν


Where Λ is the Lorentz transformation matrix for motion in the z direction.


Using the Einstein convention, this can be written as

xμ=Λμνxν

If we take the 4-vector quantities to be on an infinitesimally small scale, then there exists a linear relationship between the transformation. Following the rules of partial differentiation,


dt^' \equiv  \frac{\partial t'}{\partial t} dt+\frac{\partial t'}{\partial x} dx + \frac{\partial t'}{\partial y} dy+ \frac{\partial t'}{\partial z} dz \Rightarrow dx^{'0} \equiv  \frac{\partial x^{'0}}{\partial x^0} dx^0+\frac{\partial x^{'0}}{\partial x^1} dx^1 + \frac{\partial x^{'0}}{\partial x^2} dx^2+ \frac{\partial x^{'0}}{\partial x^3} dx^3


dx^' \equiv  \frac{\partial t'}{\partial t} dt+\frac{\partial x'}{\partial x} dx + \frac{\partial x'}{\partial y} dy+ \frac{\partial x'}{\partial z} dz\Rightarrow dx^{'1} \equiv  \frac{\partial x^{'1}}{\partial x^0} dx^0+\frac{\partial x^{'1}}{\partial x^1} dx^1 + \frac{\partial x^{'1}}{\partial x^2} dx^2+ \frac{\partial x^{'1}}{\partial x^3} dx^3


dy^' \equiv  \frac{\partial y'}{\partial t} dt+\frac{\partial y'}{\partial x} dx + \frac{\partial y'}{\partial y} dy+ \frac{\partial y'}{\partial z} dz\Rightarrow dx^{'2} \equiv  \frac{\partial x^{'2}}{\partial x^0} dx^0+\frac{\partial x^{'2}}{\partial x^1} dx^1 + \frac{\partial x^{'2}}{\partial x^2} dx^2+ \frac{\partial x^{'2}}{\partial x^3} dx^3


dz^' \equiv  \frac{\partial z'}{\partial t} dt+\frac{\partial z'}{\partial x} dx + \frac{\partial z'}{\partial y} dy+ \frac{\partial z'}{\partial z} dz\Rightarrow dx^{'3} \equiv  \frac{\partial x^{'3}}{\partial x^0} dx^0+\frac{\partial x^{'3}}{\partial x^1} dx^1 + \frac{\partial x^{'3}}{\partial x^2} dx^2+ \frac{\partial x^{'3}}{\partial x^3} dx^3


Expressing this in matrix form

[dx0dx1dx2dx3]=[x0x0x0x1x0x2x0x3x1x0x1x1x1x2x1x3x2x0x2x1x2x2x2x3x3x0x3x1x3x2x3x3][dx0dx1dx2dx3]


Again, using a summation over the indicies

dxμ=3ν=0xμxνdxν


Using the Einstein convention

dxμ=xμxνdxν


The Lorentz transformations are also invariant in that they are just a rotation, i.e. Det Λ=1. The inner product is preserved,


ΛμνημνΛνμ=ημν


[γ00γβ01000010γβ00γ][1000010000100001][γ00γβ01000010γβ00γ]T=[1000010000100001]


[γ2β2γ200001000010000γ2+β2γ2]=[1000010000100001]


[γ2(1β2)00001000010000γ2(1β2)]=[1000010000100001]


Where γ11β2


[γ2γ200001000010000γ2γ2]=[1000010000100001]



[1000010000100001]=[1000010000100001]


Navigation_