Left Hand Wall

From New IAC Wiki
Revision as of 14:19, 28 April 2017 by Vanwdani (talk | contribs)
Jump to navigation Jump to search
x=y cot 29.5+0.09156

Parameterizing this

ry cot 29.5+0.09156,y,0


tt cos 29.5+0.09156,t sin 29.5,0


where the negative sign is applied to the sine function by the even odd relationships of cosine and sine, i.e. ( sin(-t)=-sin(t), cos(-t)=cos(t)) and the fact that the y component is in the 4th quadrant.

\begin{bmatrix} x \\ y \\ z \end{bmatrix}= [cos 6sin 60sin 6cos 60001] \cdot [xyz]


)

(x y z

)=(cos 6\[Degree] -sin 6\[Degree] 0 sin 6\[Degree] cos 6\[Degree] 0 0 0 1

) . (t cos (29.5\[Degree])+0.09156 -t sin (29.5\[Degree]) 0

)

(x y z

)= (0.09156cos 6 \[Degree]+t cos 6 \[Degree]cos (29.5\[Degree])+t sin 6 \[Degree]sin (29.5\[Degree]) -t cos 6 \[Degree]sin (29.5\[Degree])+0.09156 sin 6 \[Degree]+t cos (29.5\[Degree])sin 6 \[Degree] 0

)

(x y z

)= (0.09156cos 6 \[Degree]+t (cos 6 \[Degree]cos(29.5\[Degree])+ sin 6 \[Degree]sin (29.5\[Degree])) 0.09156 sin 6 \[Degree]-t (cos 6 \[Degree]sin (29.5\[Degree])-sin 6 \[Degree] cos (29.5\[Degree])) 0

)

(x y z

)= (0.09156cos 6 \[Degree]+t cos (6\[Degree] -29.5\[Degree]) 0.09156 sin 6 \[Degree]+t sin (6 \[Degree]-29.5\[Degree]) 0

)

(x y z

)= (0.09156cos 6 \[Degree]+t cos (-23.5\[Degree]) 0.09156 sin 6 \[Degree]+t sin (-23.5\[Degree]) 0

)

(x y z

)= (0.09156cos 6 \[Degree]+t cos (23.5\[Degree]) 0.09156 sin 6 \[Degree]-t sin (-23.5\[Degree]) 0

)


Using the equation for y we can solve for t

y


Substituting this into the expression for x