DV MollerTrackRecon

From New IAC Wiki
Jump to navigation Jump to search

Moller Lund

LUND file with Moller events (with origin of coordinates occurring at each event)

2       1       1       1       1       0       0.000563654     3.53715 0       6.2002
1 -1 1 11 0 0 0.69 -2.4999 10993.7998 10993.80 0.000511 0 0 0
2 -1 1 11 0 0 -0.69 2.4999 6.5852 7.08 0.000511 0 0 0


From a GEMC run WITH the Solenoid ced is used to obtain the information from the eg12_rec.ev file.

      Event29.png


We take the phi angle from the Generated Event momentum as the initial phi angle. The obtain the final phi angle, we can look at the final position of the electron with in the drift chambers.

     Detector position.png

Examining the position from Timer Based Tracking, we can see that after rotations about first the y-axis, then the z-axis transforms from the detector frame of reference to the lab frame of reference.

Euler Angles

We can use the Euler angles to perform the rotations.

For the rotation about the y axis.

Euler1.png

And the rotation about the z axis.

Euler2.png

Transformation Matrix

The Euler angles can be applied using a transformation matrix

(cos(θ)0sin(θ)010sin(θ)0cos(θ)).(xyz)


=(xcos(θ)zsin(θ)yzcos(θ)+xsin(θ))



For event #29, in sector 3, the location of the first interaction is given by

Conversions.png


Converting -25 degrees to radians, θ=0.436332 which is the rotation the detectors are rotated from the y axis.

(cos(θ)0sin(θ)010sin(θ)0cos(θ)).(15.760237.43)

=(86.05880.221.845)

Finding ϕ=120 2π360; since "sector -1" =3-1=2*60=120 degrees

(cos(ϕ)sin(ϕ)0sin(ϕ)cos(ϕ)0001).(86.05880.221.845)

(43.029474.5291221.845)

This shows how the coordinates are transformed and explains the validity of using the TBTracking information to obtain a phi angle in the lab frame.


Phi shifts

gcard to generate electrons.


 <option name="BEAM_P"   value="e-, 6.0*GeV, 30.0*deg, 10*deg">
 <option name="SPREAD_P" value="5.5*GeV, 25*deg, 180*deg">


Composite Fields.png


GeV graph.png


MeV graph.png


Total graph.png

Cross-section

Calculations of 4-momentum components(Trial 1)

This trial did not take into account the initial electron energy loss as it traveled through the target material.

4-momentum components (Not accounting for initial energy loss to scattering)

Calculations of 4-momentum components(Trial 2)

Reconstructing Moller Events

Calculations of 4-momentum components (Trial 3)

Extracting momentum components for the final states of scattered and Moller electrons in the Lab frame, we can perform a Lorentz boost to a center of mass. From the CM Frame, we build a 2D histogram of scattering angle theta vs. Energy for the Moller electron.


MolEThetaCM.png

Differential Cross Section

Variables used in Elastic Scattering

Variables Used in Elastic Scattering

Scattering Cross Section

Scattering Cross Section

Moller Differential Cross Section

Using the equation from [1]

dσdΩ1=e48E2{1+cos4(θ2)sin4(θ2)+1+sin4(θ2)cos4(θ2)+2sin2(θ2)cos2(θ2)}


where α=e2cwith=c=1 and θ=θ1=θ2


This can be simplified to the form


dσdΩ1=α24E2(3+cos2θ)2sin4θ

Plugging in the values expected for 2 scattering electrons:



α2=5.3279×105


E106.031MeV


Using unit analysis on the term outside the parantheses, we find that the differential cross section for an electron at this momentum should be around

5.3279×1054×1.124×1016eV2=1.18×1021eV2=1.18×10211eV2×1×10181×1018=.0012GeV2

Using the conversion of


11GeV2=.3894mb


.00121GeV2=.0012111GeV2=.0012×.3894mb=.467×103mb



We find that the differential cross section scale is dσdΩ.5×103mb=.5μb

CM to Lab Frame

We can substitute in for θ


dσdΩ1=α24E2(3+cos2θ)2sin4θ


dσdΩ1=α24E2(3+cos2θ)2sin(θ)sin(θ)sin(θ)sin(θ)


Using,

sin(θ)=sin(θ2)=p2p2 sin(θ2)


2σ(E,θ,ϕ)EΩ=2σ(E,θ,ϕ)EΩpp
dσdΩ1=α24E2(3+cos2θ)2p2p2 sin(θ2)p2p2 sin(θ2)p2p2 sin(θ2)p2p2 sin(θ2)



dσdΩ1=α2p424E2p42(3+cos2θ)2sin4(θ2)


Now, using the trigometric identity,

sin2t+cos2t=1cos2(θ)=1sin2(θ)


dσdΩ1=α2p424E2p42(3+1sin2(θ))2sin4(θ2)


dσdΩ1=α2p424E2p42(4sin(θ)sin(θ))2sin4(θ2)


dσdΩ1=α2p424E2p42(4p2p2 sin(θ2)p2p2 sin(θ2))2sin4(θ2)


dσdΩ1=α2p424E2p42(4p22p22 sin2(θ2))2sin4(θ2)


dσdΩ1=α2p424E2p42(168p22p22 sin2(θ2)+p42p42 sin4(θ2))sin4(θ2)


Substituting,

p2=E22m2



dσdΩ1=α2(E22m2)44E2p42(168p22p22 sin2(θ2)+p42p42 sin4(θ2))sin4(θ2)


dσdΩ1=α2(E22m2)24E2p42(168p22p22 sin2(θ2)+p42p42 sin4(θ2))sin4(θ2)


Substituting in for m, E2*,and E* α2=5.3279×105

dσdΩ1=(5.3279×105(((53.015MeV)2(.511MeV)2)24×(106.031MeV)2p42(168p22p22 sin2(θ2)+p42p42 sin4(θ2))sin4(θ2)


dσdΩ1=9.357×109eV2p42(168p22p22 sin2(θ2)+p42p42 sin4(θ2))sin4(θ2)

Different p21 Values

Using the conversion of


11GeV2=.3894mb


σ=dσ=dσdΩ2dΩ


The range of the detector is considered to be .10θ.87,πϕπ


σ=2.531.611ππdσdΩ2sinθdθdϕ


σ=2π2.531.611dσdΩ2sinθdθ


σ=2π(1.638)dσdΩ2


σ=(10.294)dσdΩ2


Differential Cross Section Scale for Different p21 Values
p2(MeV) \frac{d\sigma}{d\Omega_{2}^'}(eV^{-2}) \frac{d\sigma}{d\Omega_{2}^'}(GeV^{-2}) \frac{d\sigma}{d\Omega_{2}^'}(mb) \frac{d\sigma}{d\Omega_{2}^'}(b) σ(b)
10000 9.357×1011 9.357×107 3.644×107 3.644×104 3.751×105
5000 3.743×1010 3.743×108 1.458×108 1.458×105 1.501×106
1000 9.357×109 9.357×109 3.644×109 3.644×106 3.751×107
500 3.743×108 3.743×1010 1.458×1010 1.458×107 1.501×108

Substituting for Moller range and energies

Converting the number of electrons to barns,


dσdΩ2=dNLdΩ



dN=dσdΩL


whereL=iρI


where ρtarget is the density of the target material, ltarget is the length of the target, and N is the number of incident particles scattered.


L=.86g1cm3×(100cm)31m3×1kg1000g×[(.751mole1.01g×1000g1kg)+(.251mole14.01g×1000g1kg)]×6.022×1023particles1mole×1cm100cm×1m×1028m2barn


L=860kg1m3×[(742.574molekg)+(17.844mole1kg)]×6.022×107 particlesm31molebarn



L=5.170×104kgparticles1molebarn(760.418molekg)


L=.394 particles1barn


N=σ.394 particles1barn


Number of electrons from Moller electron Momentum
p2(MeV/c) σ(b) Numberofelectrons
10000 3.751×105 1.478×105
5000 1.501×106 5.914×105
1000 3.751×107 1.478×107
500 1.501×108 5.914×107


Lab Frame Moller DiffX.png