Niowave Report 11-30-2015

From New IAC Wiki
Revision as of 00:15, 28 November 2015 by Foretony (talk | contribs)
Jump to navigation Jump to search

Overview

10 MeV electron beam

3.48 cm diameter beam pipe

Target optimization

Optimal Thickness

Optimal Solenoidal Field

Beam Pipe heating

The energy deposited by electrons scattered into a 3.48 diameter stainless steel beam pipe (1.65 mm thick) from a PbBi target as a function of a uniform Solenoidal magnetic field.

The histogram is binned in 100 (10 cm) bin widths. The surface area becomes [math]10 cm \times 2 \pi 3.48/2 = 109.33 cm^2[/math]


To convert From Mev/ e- to kW/cm^2 assuming a current of 1mA (10^-3 C/s) you

[math]\left( \frac{\mbox{MeV}}{\mbox{cm}^2 \mbox{e}^-}\right) \times \left( \frac{ \mbox{e}^-}{1.6 \times 10^{-19}\mbox{C}} \right ) \times \left( \frac{1 \times 10^{-3} \mbox{C}}{\mbox{s}} \right ) \times \left( \frac{1.6 \times 10^{-13}\mbox{W} \cdot \mbox{ s}}{\mbox{MeV} }\right )[/math]

[math]\left( \frac{\mbox{keV}}{\mbox{cm}^2 \mbox{e}^-}\right) = \left( \frac{\mbox{W} }{\mbox{cm}^2 } \right )[/math]


BeamPipeDepEmev-vs-B.png BeamPipeDepPower-vs-B.png
Energy deposited (MeV) along a 1 m long beam pipe of stainless steel 1.65 mm thick.

Solenoid Description

A 10 MeV electron beam with a radius of 0.5 cm was incident on a 2 mm thick PbBi target. The target is positioned at Z = -901 mm.


TF Niowave SolenoidDesign 9-11-15.png


G4Beamline_PbBi#Reports