Oscillators driven by a source in resonance
- [math] \ddot x + 2 \beta \dot x + \omega^2_0x = f(t)[/math]
Complete Solution for the Sinusoidally Driven Damped oscillator
- [math]x(t) =x_h + x_p = C_1 e^{r_1 t} + C_2 e^{r_2 t} + A \cos(\omega t-\delta)[/math]
where
- [math]r_1 = - \beta + \sqrt{\beta^2 - \omega_0^2}[/math]
- [math]r_2 = - \beta + \sqrt{\beta^2 + \omega_0^2}[/math]
- [math]A=\frac{f_0} { \sqrt{(\omega_0^2 - \omega^2)^2 + 4 \beta^2 \omega^2 }}[/math]
- [math]\delta = \tan^{-1}\left ( \frac{2 \beta \omega}{(\omega_0^2- \omega^2)} \right )[/math]
Quality factor (Q)
Forest_UCM_Osc#Resonance