1-D Damped Oscillaions
Equation of Motion
As in the case of air resistance, assume there is frictional force proportional to the velocity of the oscillation body.
- [math] \sum \vec{F}_{ext} = -k\vec r - b \vec \dot v = m \vec \ddot r[/math]
- [math] \sum F_{ext} = -kx - b \dot x = m \ddot x[/math]: in 1-D
or
- [math] m \ddot x -kx - b \dot x = 0[/math]: in 1-D
or
- [math] \ddot x - \frac{k}{m}x - \frac{b}{m} \dot x = 0[/math]: in 1-D
let
- [math]\frac{k}{m} = \omega^2_0 =[/math] undamped oscillation frequency
- [math]\frac{b}{m} \equiv 2 \beta =[/math] damping constant
then
- [math] \ddot x - 2 \beta \dot x- \omega^2_0x = 0[/math]: in 1-D
As see in section Forest_UCM_Osc_SHM#Equation_of_motion
Forest_UCM_Osc#Damped_Oscillations