The equation of motion for a system restricted to 1-D is readily solved from conservation of energy when the force is conservative.
- [math]T + U(x) =[/math] cosntant [math]\equiv E[/math]
- [math]\Rightarrow T = E - U(x)[/math]
- [math] \frac{1}{2} m \dot {x}^2 = E -U(x)[/math]
- [math]\dot x = \pm \sqrt{\frac{2\left (E-U(x) \right )}{m}}[/math]
- [math]\int \pm \sqrt{\frac{m}{2\left (E-U(x) \right )}} dx = \int dt = t-t_i =t [/math]
The ambiguity in the sign of the above relation, due to the square root operation, is easily resolved in one dimension by inspection and more difficult to resolve in 3-D.
The velocity can change direction (signs) during the motion. In such cases it is best to separte the inegral into a part for one direction of the velocity and a second integral for the case of a negative velocity.
spring example
Consider the problem of a mass attached to a spring in 1-D.
- [math] F = -kx[/math]
The potential is given by
- [math]U(x) = - \int F(x) dx = \frac{1}{2} k x^2[/math]
- [math]t = \int \pm \sqrt{\frac{m}{2\left (E-U(x) \right )}} dx = \int dt [/math]
- [math] = \sqrt{\frac{m}{2}} \int_{x_0}^x\left (E-U(x) \right )^{-\frac{1}{2}} dx [/math]
- [math] = \sqrt{\frac{m}{2}} \int_{x_0}^x\left (E-\frac{1}{2}kx^2 \right )^{-\frac{1}{2}} dx [/math]
- [math] = \sqrt{\frac{m}{2}} \int_{x_0}^x E \left (1-\left ( x \sqrt{\frac{k}{2E}}\right ) ^2 \right )^{-\frac{1}{2}} dx [/math]
let
- [math]\sin \theta = x \sqrt{\frac{k}{2E}}[/math] and [math] \omega = \sqrt{\frac{k}{m}}[/math]
then
- [math]t = \frac{1}{\omega} \int_{\theta_0}^{\theta} d \theta[/math]
Forest_UCM_Energy#Energy_for_Linear_1-D_systems